

LM Guide®

冗岩版 General Catalog

LM Guide

冗景长 General Catalog

▲ Technical Descriptions of the Products

Features and Types	Model SSR
Features of the LM Guide	Model SNR/SNS A1-124
 Large Permissible Load and High Rigidity	• Model SHW
High Precision of Motion A1-7	Model SRS
 Accuracy Averaging Effect by Absorbing Mounting Surface Error A1-10 	• Model SCR 🔼 1-142
• Easy Maintenance	• Model EPF
• Improved Productivity of the Machine 🔼1-12	110
• Substantial Energy Savings	LM Guide 1-152
• Low Total Cost	• Model HSR
• Ideal Four Raceway, Circular-Arc Groove,	• Model SR
Two-Point Contact Structure	• Model NR/NRS
Superb Error-Absorbing Capability with the DF Design A1-19	• Model HRW
Classification Table of the LM Guides \(\text{\text{\$\texit{\$\text{\$\texitt{\$\texi\\$\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	• Model RSR
Classification Table of the Livi Guides	• Model RSR-Z
Daint of Colontian	• Model RSH
Point of Selection	• Model RSH
Flowchart for Selecting an LM Guide 1-22	• Model RSH-Z
Selecting a Type	• Model HR
• Types of LM Guides	• Model GSR
Setting Conditions \alpha 1-34	• Model GSR-R
Conditions of the LM Guide	• Model CSR
Calculating the Applied Load ☐1-50	• Model MX
Rated Load of an LM Guide in Each Direction ▲1-50	Model JR ▲1-234
• Calculating an Applied Load 🖺 1-51	• Model HCR
Calculating the Equivalent Load ☐1-70	• Model HMG
Calculating the Static Safety Factor ▲1-71	Model NSR-TBC △1-250
Calculating the Average Load	Model HSR-M1
 Example of Calculating the Average Load (1) 	• Model SR-M1
- with Horizontal Mount and Acceleration/Deceleration Considered 🖪 1-74	Model RSR-M1
Example of Calculating the Average Load (2)	• Model HSR-M2
- When the Rails are Movable 🗚 1-75	
Calculating the Nominal Life	Structure and Features of the Caged Roller LM Guide 🔼 1-278
Nominal Life Equation for an LM Guide Using Balls .	Advantages of the Caged Roller Technology . ▲1-279
Rated Life Equation for an LM Guide Using Rollers . A1-76	5 5 21210
Example of Calculating the Nominal Life (1)	Caged Roller LM Guide 1-282
- with Horizontal Mount and High-speed Acceleration A1-79	• Model SRG
Example of Calculating the Nominal Life (2)	• Model SRN
- with Vertical Mount	• Model SRW
Predicting the Rigidity	II 1-234
• Selecting a Radial Clearance (Preload) 🔼 1-87	Point of Design 1-300
• Service Life with a Preload Considered A1-88	Designing the Guide System
• Rigidity	• Examples of Arrangements of the Guide System. A1-300
• Radial Clearance Standard for Each Model . A1-89	Method for Securing an LM Guide to Meet the Conditions \[\textsup 1-300 \]
Determining the Accuracy △1-92 • Accuracy Standards △1-92	Designing a Mounting Surface
Cuidelines for Accuracy Crades by Machine Type.	2 Chaulder Height of the Mounting Bose and the Corner Radius . = 4.000
Guidelines for Accuracy Grades by Machine Type . A1-93 Accuracy Standard for Food Model	Shoulder Height of the Mounting Base and the Corner Radius . A1-308 Description of the Mounting Surface.
Accuracy Standard for Each Model	• Permissible Error of the Mounting Surface 1-315
	 Marking on the Master LM Guide and Combined Use
Feature of Each Model 1-105	
Structure and Features of the Caged Ball LM Guide 1-106	Mounting Procedure and Maintenance
 Advantages of the Ball Cage Technology	Mounting the LM Guide
0 10 11 11 0 11	Mounting Procedure
Caged Ball LM Guide	Methods for Measuring Accuracy after Installation A1-332
• Model SHS	• Recommended Tightening Torque for LM Rails . A1-332

Options Contamination Protection • Seal and Metal Scraper • Laminated Contact Scraper LaCS • Light-Resistance Contact Seal LiCS. • Dedicated bellows. • Dedicated LM Cover • Cap C • Cap GC • Plate Cover SV – Steel Tape SP	A1-334 A1-335 A1-335 A1-336 A1-336 A1-336
Lubrication • QZ Lubricator • Lubrication Adapter • Removing/mounting Jig • End Piece EP	A1-348 A1-348 A1-349
List of Parts Symbols Table of Supported Options by Models	
Dimensions of Each Model with an Option Attached Seal resistance value Resistance of LaCS Maximum Seal Resistance of LiCS Greasing Hole	A1-356 A1-359 A1-360
Model No. • Model Number Coding. • Notes on Ordering.	A 1-366
Precautions on Use Precautions on Using the LM Guide Precautions on Using Options for the LM Guide • QZ Lubricator for the LM Guide • Laminated Contact Scraper LaCS, Side Scraper for LM Guides • Light Contact Seal LiCS for LM Guides • Cap GC	A1-370 A1-371 A1-371 A1-371

■ Product Specifications (Separate)

Dimensional Drawing, Dimensional Table				
Caged Ball LM Guide				
Model SHS	■ 1-5			
Model SSR	■ 1-15			
Model SNR/SNS	B 1-25			
Model SHW	B 1-43			
Model SRS	B 1-49			
Model SCR	B 1-57			
Model EPF	■ 1-63			
LM Guide				
Model HSR	D4 07			
• Model SR	□ 1-0 <i>1</i>			
Model NR/NRS	■1-91 ■4.00			
Model HRW	■1-99 ■4.442			
Model RSR	■1-113			
Model RSR-Z	■ 1-119			
Model RSH	■ 1-129			
• Model RSH 7	■1-135			
Model RSH-Z	■ 1-139			
Model HR	■ 1-145			
Model GSR	■ 1-153			
Model GSR-R	■ 1-157			
Model CSR	B 1-161			
Model MX	B 1-167			
Model JR	B 1-171			
Model HCR	■ 1-177			
Model HMG	■ 1-181			
Model NSR-TBC	B 1-187			
Model HSR-M1	B 1-191			
Model SR-M1	B 1-201			
Model RSR-M1	B 1-207			
Model HSR-M2	B 1-213			
Caged Roller LM Guide				
• Model SRG	M4 047			
Model SRN	1-21/			
Model SRW	1-225			
Options	B1-235			
The LM Block Dimension (Dimension L) with LaCS and Seals Attached	B1-236			
Incremental Dimension with Grease Nipple (When LaCS is Attached).	1-200			
LM Block Dimension (Dimension L) with LiCS Attached	1-243 1 245			
Incremental Dimension with Grease Nipple (When LiCS is Attached)	1-240			
• Bellows	1-240			
• LM cover	1-247			
• Cap C	1-200			
• Cap GC	1-202			
LM Block Dimension (Dimension L) with QZ Attached	1-263			
Lubrication Adapter	1-264			
End Piece EP	1-26/			
Crossing Hole	■ 1-268			
Greasing Hole Pack and Pinion	■ 1-269			
Rack and Pinion	■ 1-272			

* Please see the separate "B Product Specifications".

Features of the LM Guide

Functions Required for Linear Guide Surface

Large permissible load
Highly rigid in all directions
High positioning repeatability
Running accuracy can be obtained easily

High accuracy can be maintained over a long period

Smooth motion with no clearance
Superbly high speed
Easy maintenance
Can be used in various environments

Features of the LM Guide

Large permissible load and high rigidity

Accuracy averaging effect by absorbing mounting surface error

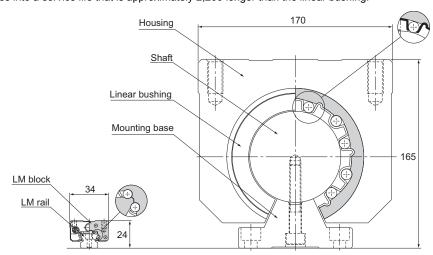
Ideal four raceway, circular-arc groove, two point contact structure

Superb error-absorbing capability with the DF design

Low friction coefficient

Wide array of options (QZ lubricator, Laminated contact scraper LaCS, etc.)

As a result, the following features are achieved.


Easy maintenance
Improved productivity of the machine
Substantial energy savings
Low total cost
Higher accuracy of the machine
Higher efficiency in machine design

Large Permissible Load and High Rigidity

[Large Permissible Load]

The LM Guide has raceway grooves with a radius almost equal to the ball radius, which is significantly different from the linear bushing. As shown in Fig.1, which compares size between the LM Guide and the linear bushing with similar basic dynamic load ratings, the LM Guide is much smaller than the linear bushing, indicating that the LM Guide allows a significantly compact design.

The reason for this space saving is the greater difference in permissible load between the R-groove contact structure and the surface contact structure. The R-groove contact structure (radius: 52% of the ball radius) can bear a load per ball 13 times greater than the surface contact structure. Since service life is proportional to the cube of the permissible load, this increased ball-bearing load translates into a service life that is approximately 2,200 longer than the linear bushing.

LM Guide model SSR15XW
Basic dynamic load rating: 14.7 kN

Linear Bushing model LM80 OP Basic dynamic load rating: 7.35 kN

Fig.1 Comparison between the LM Guide and the Linear Bushing

Table1 Load Capacity per Ball (P and P₁)
Permissible contact surface pressure: 4,200 MPa

		-	
	R-groove (P)	Flat surface (P ₁)	P/P ₁
φ 3.175 (1/8´´)	0.90 kN	0.07 kN	13
φ 4.763 (3/16´´)	2.03 kN	0.16 kN	13
φ 6.350 (1/4´´)	3.61 kN	0.28 kN	13
φ 7.938 (5/16´´)	5.64 kN	0.44 kN	13
φ 11.906 (15/32´´)	12.68 kN	0.98 kN	13

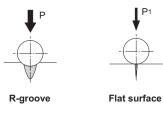


Fig.2 Load Capacity per Ball

[High Rigidity]

The LM Guide is capable of bearing vertical and horizontal loads. Additionally, due to the circular-arc groove design, it is capable of carrying a preload as necessary to increase its rigidity.

When compared with a feed screw shaft system and a spindle in rigidity, the guide surface using an LM Guide has higher rigidity.

Example of comparing static rigidity between the LM Guide, a feed screw shaft system and a spindle

(vertical machining center with the main shaft motor of 7.5 kW)

[Components]

LM Guide: SNR45LC/C0

(C0 clearance: preload = 8.05kN)

Ball Screw: BNFN4010-5/G0

(G0 clearance: preload = 2.64kN)

Spindle: general-purpose cutting spindle

Table2 Comparison of Static Rigidity

Unit: N/µm

Components	X-axis direction	Y-axis direction	Z-axis direction
LM Guide	_	2110	8700 (radial) 6730 (reverse radial)
Ball screw	330	_	_
Spindle	250	250	280

Note) The rigidity of the feed screw shaft system includes rigidity of the shaft end support bearing.

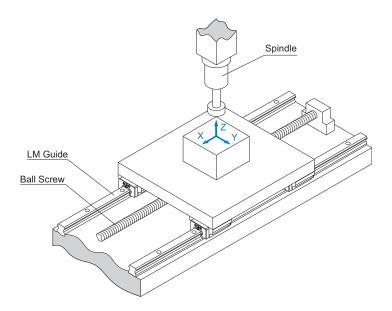
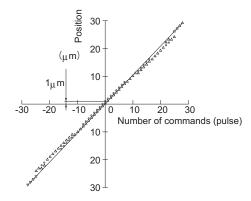



Fig.3

High Precision of Motion

[Small lost motion]

The LM Guide is provided with an ideal rolling mechanism. Therefore, the difference between dynamic and static friction is minimal and lost motion hardly occurs.

LM Guide model HSR45

Square slide + Turcite

(Measurements are taken with the single-axis table loaded with a 500-kg weight)

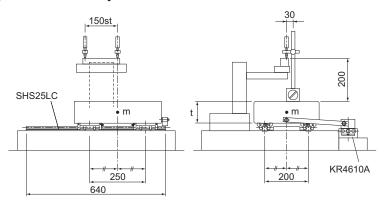
Fig.4 Comparison of Lost Motion between the LM Guide and a Slide Guide

Table3 Lost Motion Comparison

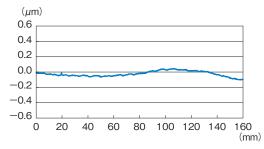
Unit: µm

		Test method					
Туре	Clearance	A	Based on minimum				
		10mm/min	500mm/min	4000mm/min	unit feeding		
LM Guide	C1 clearance (see table below)	2.3	5.3	3.9	0		
(HSR45)	C0 clearance (see table below)	3.6	4.4	3.1	1		
Square slide	0.02mm	10.7	15	14.1	14		
turcite	0.005mm	8.7	13.1	12.1	13		

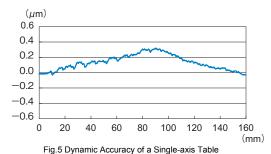
Radial clearance of the LM Guide


Unit: µm

Symbol	C1	C0
Radial clearance	-25 to -10	-40 to -25


[High running accuracy]

Use of the LM Guide allows you to achieve high running accuracy.


[Measurement method]

Pitching accuracy

Yawing accuracy

[High accuracy maintained over a long period]

As the LM Guide employs an ideal rolling mechanism, wear is negligible and high precision is maintained for long periods of time. As shown in Fig.6, when the LM Guide operates under both a preload and a normal load, more than 90% of the preload remains even after running 2,000 km.



Fig.6 Condition

[Conditions]

Model No. : HSR65LA3SSC0 + 2565LP-II

Radial clearance

: C0 (preload: 15.7 kN)

Stroke : 1.050mm

Speed : 15 m/min (stops 5 sec at both ends)

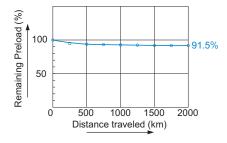
Acceleration/decelelation time in rapid motion

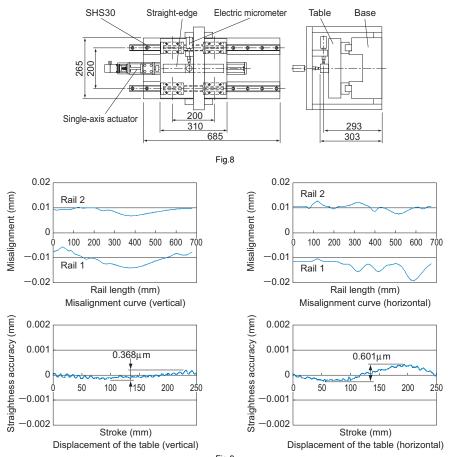
: 300 ms (acceleration: α = 0.833 m/s²)

Mass : 6000kg Drive : Ball Screws

Lubrication: Lithium soap-based grease No. 2

(greased every 100 km)




Fig.7 Distance Traveled and Remaining Preload

Accuracy Averaging Effect by Absorbing Mounting Surface Error

The LM Guide contains highly spherical balls and has a constrained structure with no clearance. In addition, it uses LM rails in parallel on multiple axes to form a guide system with multiple-axis configuration. Thus, the LM Guide is capable of absorbing misalignment in straightness, flatness or parallelism that would occur in the machining of the base to which the LM Guide is to be mounted or in the installation of the LM Guide by averaging these errors.

The magnitude of the averaging effect varies according to the length or size of the misalignment, the preload applied on the LM Guide and the number of axes in the multiple-axis configuration. When misalignment is given to one of the LM rails of the table as shown in Fig.8, the magnitude of misalignment and the actual dynamic accuracy of the table (straightness in the horizontal direction) are as shown in Fig.9.

By applying such characteristics obtained with the averaging effect, you can easily establish a guide system with high precision of motion.

Even on a roughly milled mounting surface, the LM Guide drastically increases running accuracy of the top face of the table.

[Example of Installation]

When comparing the mounting surface accuracy (a) and the table running accuracy (b), the results are:

Vertical 92.5
$$\mu$$
m \rightarrow 15 μ m = 1/6
Horizontal 28 μ m \rightarrow 4 μ m = 1/7

Table4 Actual Measurement of Mounting-Surface Accuracy Unit: μm

Direction	Mounting surface		Straightness	Average (a)
	A Ital		80	
Vertical	Horizontal	В	105	92.5
	ice	С	40	
Bottom surface	Side surface	D	16	28

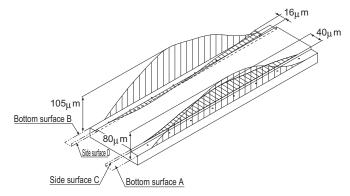


Fig.10 Surface Accuracy of the LM Guide Mounting Base (Milled Surface Only)

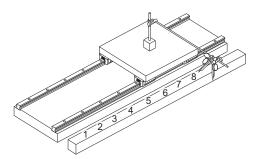


Fig.11 Running Accuracy After the LM Guide Is Mounted

Table5 Actual Measurement of Running Accuracy on the Table (Based on Measurement in Fig.10 and Fig.11)

Unit: µm

ſ	Direction		Measurement point							
Direction	1	2	3	4	5	6	7	8	Straightness (b)	
	Vertical	0	+2	+8	+13	+15	+9	+5	0	15
Ī	Horizontal	0	+1	+2	+3	+2	+2	-1	0	4

Easy Maintenance

Unlike with sliding guides, the LM Guide does not incur abnormal wear. As a result, sliding surfaces do not need to be reconditioned, and precision needs not be altered. Regarding lubrication, sliding guides require forced circulation of a large amount of lubricant so as to maintain an oil film on the sliding surfaces, whereas the LM Guide only needs periodical replenishing of a small amount of grease or lubricant. Maintenance is that simple. This also helps keep the work environment clean.

Improved Productivity of the Machine

Since the LM Guide is superb in high speed, productivity of the machine is improved.

Table6 Examples of Using the LM Guide in High-speed Applications

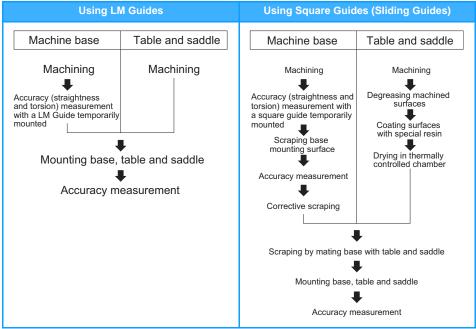
Machine using the LM Guide	Place where the LM Guide is used	Speed (m/s)	Model No.
Durability test machine	X axis	5.0	SSR25XW
Diek up rehet	X axis	2.0	SSR25XW
Pick-up robot	Z axis	3.0	SSR15XW
Injection molding machine	Automatic unloading unit	2.2	SHS30LR
Glass cutter	Glass cutter Cutter sliding unit		SSR25XW
XY table	X-Y axis	2.3	RSR15WV

Substantial Energy Savings

As shown in Table7, the LM Guide has a substantial energy saving effect.

Table7 Comparative Data on Sliding and Rolling Characteristics

Machine Specifications				
Type of machine	Single-axis surface grinding machine (sliding guide)	Three-axis surface grinding machine (rolling guide)		
Overall length × overall width	13m×3.2m	12.6m×2.6m		
Total mass	17000kg	16000kg		
Table mass 5000kg		5000kg		
Grinding area	0.7m×5m	0.7m×5m		
Table guide	Rolling through V-V guide	Rolling through LM Guide installation		
No. of grinding stone axes	Single axis (5.5 kW)	Three axes (5.5 kW + 3.7 kW x 2) Grinding capacity: 3 times greater		


	Table Drive Specifications				
Motor used	38.05kW	3.7kW	10.3		
Drive hydraulic pressure	Bore diameter <i>ϕ</i> 160 × 1.2MPa	Bore diameter <i>ϕ</i> 65×0.7MPa	_		
Thrust	23600N	2270N	10.4		
Electric Power consumption	38kWH	3.7kWH	10.3		
Drive hydraulic pressure oil consumption	400l/year	250l/year	1.6		
Lubricant consumption	60 ℓ/year (oil)	3.6 ℓ/year (grease)	16.7		

Low Total Cost

Compared with a sliding guide, the LM Guide is easier to assemble and does not require highly skilled technicians to perform the adjustment work. Thus, the assembly man-hours for the LM Guide are reduced, and machines and systems incorporating the LM Guide can be produced at lower cost. The figure below shows an example of difference in the procedure of assembling a machining center between using siding guides and using LM Guides.

Normally, with a sliding guide, the surface on which the guide is installed must be given a very smooth finish by grinding. However, the LM Guide can offer high precision even if the surface is milled or planed. Using the LM Guide thus cuts down on machining man-hours and lowers machining costs as a whole.

[Assembly Procedure for a Machining Center]

When extremely high precision is not required (e.g., running accuracy), the LM Guide can be attached to the steel plate even if the black scale on it is not removed.

Ideal Four Raceway, Circular-Arc Groove, Two-Point Contact Structure

The LM Guide has a self-adjusting capability that competitors' products do not have. This feature is achieved with an ideal four raceway, circular-arc groove, two-point contact structure.

[Comparison of Characteristics between the LM Guide and Similar Products]

As indicated in Fig.12 and Fig.13, when the ball rotates one revolution, the ball slips by the difference between the circumference of the diameter of inner surface (πd_1) and that of the outer contact diameter (πd_2) . (This slip is called differential slip.) If the difference is large, the ball rotates while slipping, the friction coefficient increases more than 10 times and the friction resistance steeply increases.

Four Raceway, Circular-Arc Groove, Two-Point Contact Structure

Two-Row, Gothic-Arch Groove, Four Point Contact Structure

Smooth Motion

Since the ball contacts the groove at two points in the load direction as shown in Fig. 12 and Fig. 13 on \square 1.15 even under a preload or a normal load, the difference between d_1 and d_2 is small and the differential slip is minimized to allow smooth rolling motion.

The difference between d_1 and d_2 in the contact area is large as shown in Fig.12 and Fig.13 on \triangle 1-15. Therefore, if any of the following occurs, the ball will generate differential slip, causing friction almost as large as sliding resistance and shortening the service as a result of abnormal friction.

- (1) A preload is applied.
- (2) A lateral load is applied.
- (3) The mounting parallelism between the two axes is poor.

Accuracy and Rigidity of the Mounting Surface

In the ideal two-point contact structure, four rows of circular arc grooves are given appropriate contact angles. With this structure, a light distortion of the mounting surface would be absorbed within the LM block due to elastic deformation of the balls and moving of the contact points to allow unforced, smooth motion. This eliminates the need for a robust mounting base with high rigidity and accuracy for machinery such as a conveyance system.

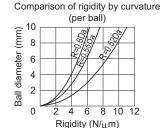
With the Gothic-arch groove product, each ball contacts the groove at four points, preventing itself from being elastically deformed and the contact points from moving (i.e., no self-adjusting capability). Therefore, even a slight distortion of the mounting surface or an accuracy error of the rail bed cannot be absorbed and smooth motion cannot be achieved. Accordingly, it is necessary to machine a highly rigid mounting base with high precision and mount a high precision rail.

Rigidity

With the two-point contact, even if a relatively large preload is applied, the rolling resistance does not abnormally increase and high rigidity is obtained.

Since differential slip occurs due to the four-point contact, a sufficient preload cannot be applied and high rigidity cannot be obtained.

Load Rating


Since the curvature radius of the ball raceway is 51 to 52% of the ball diameter, a large rated load can be obtained.

Since the curvature radius of the gothic arch groove has to be 55 to 60% of the ball diameter, the rated load is reduced to approx. 50% of that of the circular arc groove.

Difference in Rigidity

As shown in Fig.14, the rigidity widely varies according to the difference in curvature radius or difference in preload.

Curvature radius and rigidity

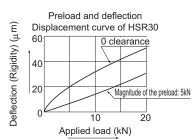


Fig.14

Difference in Service Life

Since the load rating of the gothic arch groove is reduced to approx. 50% of that of the circular arc groove, the service life also decreases to 87.5%.

[Accuracy Error of the Mounting Surface and Test Data on Rolling Resistance]

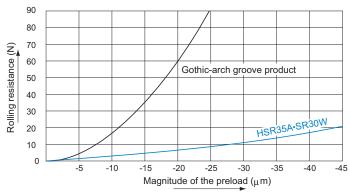
The difference between the contact structures translates into a rolling resistance.

In the gothic arch groove contact structure, each ball contacts at four points and differential slip or spinning occurs if a preload is applied to increase rigidity or an error in the mounting precision is large. This sharply increases the rolling resistance and causes abnormal wear in an early stage.

The following are test data obtained by comparing an LM Guide having the four raceway, circular-arc groove two-point contact structure and a product having the two-row, Gothic-arch, four-point contact structure.

[Sample]

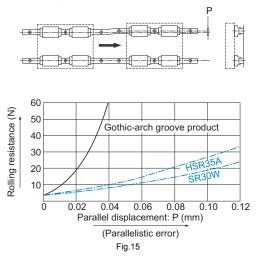
(1) LM Guide SR30W (radial type) 2 sets HSR35A (4-way equal-load type) 2 sets


(2) Two-row Gothic-arch groove product Type with dimensions similar to HSR30 2 sets

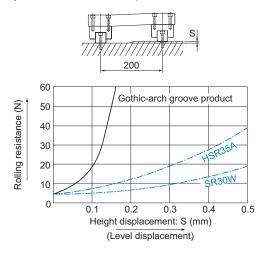
[Conditions]

Radial clearance: ±0um Without seal Without lubrication Load: table mass of 30 kg

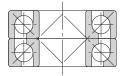
Data 1: Preload and rolling resistance


When a preload is applied, the rolling resistance of the Gothic-arch groove product steeply increases and differential slip occurs. Even under a preload, the rolling resistance of the LM Guide does not increase.

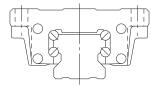
Data 2: Error in parallelism between two axes and rolling resistance


As shown in the Fig.15, part of the rails mounted in parallel is parallelly displaced and the rolling resistance at that point is measured.

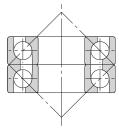
With the Gothic-arch groove product, the rolling resistance is 34 N when the parallelistic error is 0.03 mm and 62 N when the error is 0.04 mm. These resistances are equivalent to the slip friction coefficients, indicating that the balls are in sliding contact with the groove.

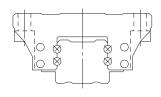

Data 3: Difference between the levels of the right and left rails and rolling resistance

The bottom of either rail is displaced by distance S so that there is a level difference between the two axes, and then rolling resistance is measured. If there is a level difference between the right and left rails, a moment acts on the LM block, and in the case of the Gothic-arch groove, spinning occurs. Even if the level difference between the two rails is as great as 0.3/200 mm, the LM Guide absorbs the error. This indicates that the LM Guide can operate normally even when such errors are present.

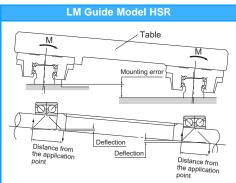


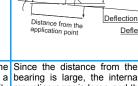
Superb Error-Absorbing Capability with the DF Design


Since the LM Guide has a contact structure similar to the front-to-front mount of angular ball bearings, it has superb self-adjusting capability.


Angular Ball Bearings Mounted Front-to-front (DF type)

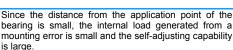
DF Type Four-row Angular Contact (LM Guide)




Angular Ball Bearings Mounted Back-to-back (DB type)

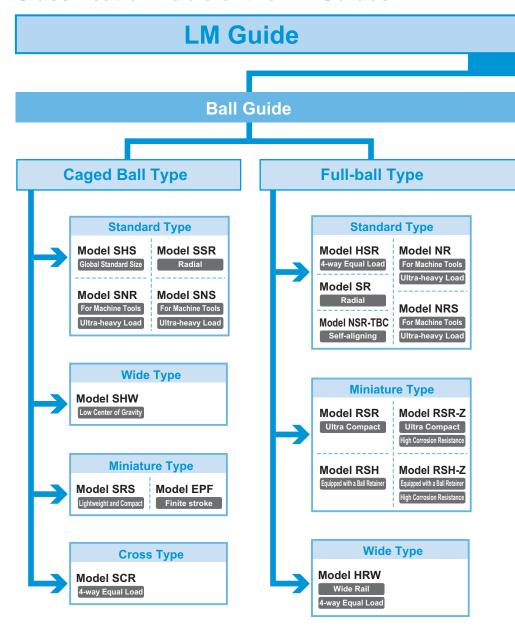
Four-row Gothic-arch Contact

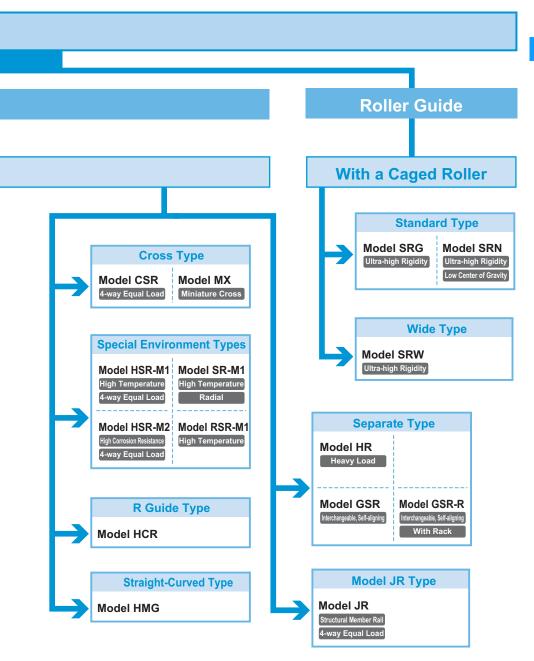
An LM ball quide mounted on a plane receives a moment (M) due to an error in flatness or in level or a deflection of the table. Therefore, it is essential for the guide to have self-adjusting capability.


Similar Product of a Competitor Block

Mounting error

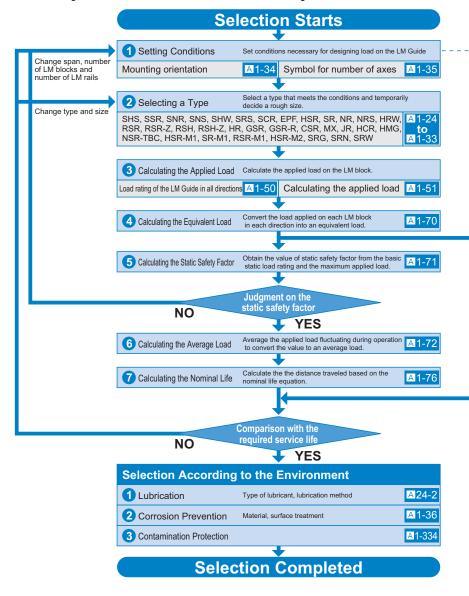
Since the distance from the application point of the bearing is large, the internal load generated from a mounting error is large and the self-adjusting capability

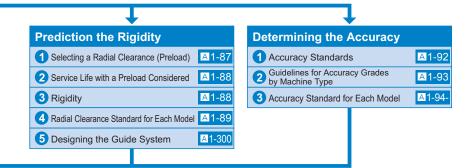

Deflection


With an LM ball guide having angular ball bearings mounted back-to-back, if there is an error in flatness or a deflection in the table, the internal load applied to the block is approx. 6 times greater than that of the front-tofront mount structure and the service life is much shorter. In addition, the fluctuation in sliding resistance is greater.

Distance from the application point

Classification Table of the LM Guides




Flowchart for Selecting an LM Guide

[Steps for Selecting an LM Guide]

The following flowchart can be used as reference for selecting an LM Guide.

- · Space in the guide section
- Dimensions (span, number of LM blocks, number of LM rails, thrust)
- · Installation direction (horizontal, vertical, slant mount, wall mount, suspended)
- · Magnitude, direction and position of the working load
- Operating frequency (duty cycle)
- ·Speed (acceleration)
- ·Stroke length
- · Required service life
- Precision of motion
- Environment
- In a special environment (vacuum, clean room, high temperature, environment exposed to contaminated environment, etc.), it is necessary to take into account material, surface treatment, lubrication and contamination protection.

Selecting a Type

Types of LM Guides

THK offers a wide array of types and dimensions with LM Guides as standard so that you can select the optimal product for any application. With the unit structure of each model, you can easily obtain high running accuracy with no clearance simply by mounting the product on a plane surface with bolts. We have a proven track record and know-how in extensive applications with LM Guides.

				Charifi Lood		Basic load rating (kN)		
	Classification	Туре		Specifi- cation Table*	Load capacity diagram	Basic dynamic load rating	Basic static load rating	
			SSR-XW	■ 1-16		14.7 to 64.6	16.5 to 71.6	
	Caged Ball LM Guide		SSR-XV	▶B 1-18		9.1 to 21.7	9.7 to 22.5	
			SSR-XTB	■ 1-20		14.7 to 31.5	16.5 to 36.4	
			Model SR-W	■ 1-92		9.51 to 411	19.3 to 537	
			SR-M1W	■ 1-202	1	9.51 to 41.7	19.3 to 77.2	
			SR-V	■ 1-92	→55+	5.39 to 23.8	11.1 to 44.1	
	Full-Complement Ball		SR-M1V	▶B 1-202	†	5.39 to 23.8	11.1 to 44.1	
	LM Guides	الجا	SR-TB	■ 1-94		9.51 to 89.1	19.3 to 157	
			SR-M1TB	▶1 -204		9.51 to 41.7	19.3 to 77.2	
			SR-SB	▶B 1-94		5.39 to 23.8	11.1 to 44.1	
l type			SR- M1SB	■ 1-204		5.39 to 23.8	11.1 to 44.1	
Radial type			SNR-C	▶B 1-30		48 to 260	79 to 409	
		r M	SNR-C ►■1-30 SNR-LC ►■1-30	57 to 550	101 to 887			
			SNR-R	▶B 1-26	↓ → ;; ←	48 to 260	79 to 409	
	Caged Ball LM Guides for Machine Tools		SNR-LR	▶B 1-26		57 to 550	101 to 887	
	high-rigidity model for ultra-heavy loads	Vi.	SNR-CH	▶B 1-38		90 to 177	144 to 292	
	lor dilla ficavy foads	W-D	SNR-LCH	▶B 1-38	•	108 to 214	188 to 383	
		7 (SNR-RH	▶B 1-34		90 to 177	144 to 292	
			SNR-LRH	▶B 1-34		108 to 214	188 to 383	
	Full-Complement Ball LM Guides	7 6	NR-A	■ 1-104	1	33 to 479	84.6 to 1040	
	for Machine Tools high-rigidity model	N. Lar	NR-LA	▶B 1-104	→ 🗂 ←	44 to 599	113 to 1300	
	for ultra-heavy loads	Nor	NR-B	▶B 1-108	1	33 to 479	84.6 to 1040	

^{*}For specification tables for each model, please see the separate "B Product Specifications".

External dime	ensions (mm)			
Height	Width	Features	Major application	
24 to 48	34 to 70	Long service life, long-term mainte-	Surface grinder table Tool grinder table	
24 to 33	34 to 48	Low dust generation, low noise, acceptable running sound Superbly high speed Superbly high speed mounting error	 Electric discharge machine Printed circuit board drilling 	
24 to 33	52 to 73	Smooth motion in all mounting orientations Stainless steel type also available as standard	machine Chip mounter High-speed transfer equip-	
24 to 135	34 to 250		ment Traveling unit of robots	
24 to 48	34 to 70		 Machining center NC lathe Five axis milling machine 	
24 to 48	34 to 70		Conveyance systemMold guide of pressing	
24 to 48	34 to 70	Thin, compact design, large radial load capacity Superb in planar running accuracy Superb capability of absorbing mounting error	machines Inspection equipment Testing machine Food-related machine Medical equipment 3D measuring instrument	
24 to 68	52 to 140	Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, also available		
24 to 48	52 to 100		 Packaging machine Injection molding machine 	
24 to 48	52 to 100		 Woodworking machine Ultra precision table Semiconductor/liquid crystal 	
24 to 48	52 to 100		manufacturing equipment	
31 to 75	72 to 170	Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound		
31 to 90	72 to 215	Superbly high speed Smooth motion in all mounting orientations Ultra-heavy load capacity optimal for machine tools		
31 to 75	50 to 126	Thin, compact design, large radial load capacity High vibration resistance and impact resistance due to improved damping		
31 to 90	50 to 156	characteristics Superb in planar running accuracy	 Machining center NC lathe Grinding machine 	
48 to 70	100 to 140	 Long service life, long-term mainte- nance-free operation Large radial load capacity High vibration resistance and 	Five axis milling machineJig borerDrilling machine	
48 to 70	100 to 140		NC milling machineHorizontal milling machine	
55 to 80	70 to 100	 Smooth motion in all mounting orientations Has dimensions almost the same as that of the full-ball type LM 	 Mold processing machine Graphite working machine Electric discharge machine 	
55 to 80	70 to 100	Ultra-heavy load capacity optimal for machine tools Guide model HSR, which is practically a global standard size	Wire-cut electric discharge machine	
31 to 105	72 to 260	Ultra-heavy load capacity optimal for machine tools High vibration resistance and impact resistance due to improved damping		
31 to 105	72 to 260	characteristics Thin, compact design, large radial load capacity		
31 to 105	72 to 260	Superb in planar running accuracy		

					Basic load rating (kN)		
Classification	Туре		Specifica- tion Table*	Load capacity diagram	Basic dynamic load rating	Basic static load rating	
Full-Complement Ball	N.	NR-LB	▶B 1-108	1	44 to 599	113 to 1300	
for Machine Tools		NR-R	▶B 1-100	→ 🗀 ←	33 to 479	84.6 to 1040	
for ultra-heavy loads		NR-LR	▶B 1-100	1	44 to 599	113 to 1300	
		SNS-C	■ 1-32		37 to 199	61 to 315	
		SNS-LC	■ 1-32		44 to 422	78 to 679	
Conned Pall	2	SNS-R	■ 1-28	_	37 to 199	61 to 315	
LM Guides		SNS-LR	■ 1-28	↓	44 to 422	78 to 679	
high-rigidity model	5	SNS-CH	■ 1-40	1	69 to 136	110 to 225	
Tor unita-neavy loads	W	SNS-LCH	■ 1-40	-	83 to 164	144 to 295	
		SNS-RH	■ 1-36		69 to 136	110 to 225	
		SNS-LRH	■ 1-36		83 to 164	144 to 295	
		SRG-A, C	■ 1-218	↓ ←	11.3 to 131	25.8 to 266	
		SRG-LA, LC	■ 1-218		26.7 to 278	63.8 to 599	
		SRG-R, V	■ 1-222		11.3 to 131	25.8 to 266	
Caged Roller		SRG-LR, LV	■ 1-222		26.7 to 601	63.8 to 1170	
super ultra-heavy-		SRN-C	■ 1-226		59.1 to 131	119 to 266	
types		SRN-LC	■ 1-226		76 to 278	165 to 599	
		SRN-R	■ 1-228		59.1 to 131	119 to 266	
		SRN-LR	■ 1-228		76 to 278	165 to 599	
		SRW-LR	■ 1-232		115 to 601	256 to 1170	
	r (†	NRS-A	■ 1-106		25.9 to 376	59.8 to 737	
E II O t	l Lar	NRS-LA	■ 1-106	_	34.5 to 470	79.7 to 920	
LM Guides	6	NRS-B	■ 1-110	↓	25.9 to 376	59.8 to 737	
high-rigidity model		NRS-LB	■ 1-110	→ ::-	34.5 to 470	79.7 to 920	
Ina neary route	r (1)	NRS-R	▶B 1-102		25.9 to 376	59.8 to 737	
		NRS-LR	▶B 1-102		34.5 to 470	79.7 to 920	
	Full-Complement Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Roller LM Guide - super ultra-heavy- load, high rigidity types Full-Complement LM Guides for Machine Tools	Full-Complement Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Roller LM Guide- super ultra-heavy- load, high rigidity types Full-Complement LM Guides for Machine Tools high-rigidity model for ultra-heavy- load, high rigidity types	Full-Complement Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Roller LM Guide - super ultra-heavy- load, high rigidity types Full-Complement LM Guides for Machine Tools high-rigidity model for ultra-heavy- load, high rigidity types Full-Complement LM Guides for Machine Tools high-rigidity model for ultra-heavy- load, high rigidity types Full-Complement LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Full-Complement LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Full-Complement LM Guides for Machine Tools high-rigidity model for ultra-heavy loads NRS-B NRS-LB NRS-LB NRS-LB NRS-R	Full-Complement Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Roller LM Guide - super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types Full-Complement LM Guide - Super ultra-heavy- load, high rigidity types SRN-LC SRN-LC SRN-LC SRN-LC SI-228 SRN-LC SRN-LC SI-228 SRN-LR SI-228 SRN-LR SI-228 SRN-LR SI-228 SRN-LR SI-106 NRS-LA NRS-LA SI-1106 NRS-LB NRS-LB NRS-LB SI-1102	Full-Complement Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads Caged Roller LM Guides for ultra-heavy loads Caged Roller SNS-LC	Classification Type Specification Table capacity clagarity clagram Basic dynamic load rating capacity clagram Full-Complement Ball LM Guides for Machine Tools high-rigidity model for ultra-heavy loads NR-LB ▶ 11-100 ↓ 44 to 599 NR-LR ▶ 11-100 ↓ 44 to 599 33 to 479 NR-LR ▶ 11-100 ↓ 44 to 599 SNS-C ▶ 11-32 37 to 199 SNS-LC ▶ 11-28 37 to 199 SNS-LC ▶ 11-28 44 to 422 SNS-LC ▶ 11-28 44 to 422 SNS-LCH ▶ 11-28 44 to 422 SNS-LCH ▶ 11-28 44 to 422 SNS-LCH ▶ 11-40 83 to 164 SNS-LCH ▶ 11-36 83 to 164 SNS-LCH ▶ 11-218 83 to 164 SNS-LRH ▶ 11-218 26.7 to 278 SRG-LA, LC ▶ 11-228 11.3 to 131 SRM-LC ▶ 11-222 11.3 to 131 SRN-LC ▶ 11-226 59.1 to 131 76 to 278 59.1 to 131 76 to 278 76 to 278	

^{*}For specification tables for each model, please see the separate " Product Specifications".

External dimensions (mm)					
Height	Width	Features	Major application		
31 to 105	72 to 260	Ultra-heavy load capacity optimal for machine tools			
31 to 105	50 to 200	High vibration resistance and impact resistance due to improved damping characteristics Low-Profile compact design, large radial load capacity			
31 to 105	50 to 200	Superb in planar running accuracy			
31 to 75	72 to 170	Long service life, long-term maintenance-free operation			
31 to 90	72 to 215	Low dust generation, low noise, acceptable running sound Superbly high speed Smooth motion in all mounting orientations			
31 to 75		Ultra-heavy load capacity optimal for machine tools Low-Profle compact 4-way type High vibration resistance and impact resistance due to improved damping			
31 to 90	50 to 156	characteristics			
48 to 70	100 to 140	Long service life, long-term mainte- nance-free operation Low dust generation, low noise, impact resistance due to improved			
48 to 70	100 to 140	acceptable running sound Superbly high speed Smooth motion in all mounting ori- as that of the full-ball type LM	Machining center NC lathe Grinding machine Five axis milling machine Jig borer Drilling machine Horizontal milling machine Horizontal milling machine Graphite working machine Electric discharge machine Wire-cut electric discharge		
55 to 80	70 to 100	entations Ultra-heavy load capacity optimal for machine tools			
55 to 80	70 to 100	tor machine tools			
24 to 70	47 to 140				
30 to 120	63 to 250	Long service life, long-term maintenance-free operation Low noise, acceptable running sound Superbly high speed			
24 to 80	34 to 100	Smooth motion due to prevention of rollers from skewing Ultra-heavy load capacity optimal for machine tools			
30 to 90	44 to 126				
44 to 63	100 to 140		machine		
44 to 75	100 to 170	Long service life, long-term maintenance-free operation Low noise, acceptable running sound			
44 to 63	70 to 100	Superbly high speed Smooth motion due to prevention of rollers from skewing Ultra-heavy load capacity optimal for machine tools			
44 to 75	70 to 126	Low center of gravity, ultra-high rigidity			
70 to 150	135 to 300				
31 to 105	72 to 260				
31 to 105	72 to 260				
31 to 105	72 to 260	Ultra-heavy load capacity optimal for machine tools High vibration resistance and impact resistance due to improved damping			
31 to 105	72 to 260	characteristics Low-Profile compact design, 4-way equal load			
31 to 105	50 to 200				
31 to 105	50 to 200				

					Load	Basic load rating (kN)	
	Classification	Туре		Specifica- tion Table*	capacity diagram	Basic dynamic load rating	Basic static load rating
		ų	SHS-C	▶1 -6		14.2 to 205	24.2 to 320
			SHS-LC	▶B 1-6		17.2 to 253	31.9 to 408
	Caged Ball LM Guide -		SHS-V	▶B 1-8		14.2 to 205	24.2 to 320
	heavy-load, high rigidity types	<u>_</u>	SHS-LV	■ 1-8		17.2 to 253	31.9 to 408
		التار	SHS-R	■ 1-10		14.2 to 128	24.2 to 197
			SHS-LR	■ 1-10		36.8 to 161	64.7 to 259
			HSR-A	■ 1-68		8.33 to 210	13.5 to 310
			HSR-M1A	■ 1-192		8.33 to 37.3	13.5 to 61.1
		11 6	HSR-LA	■ 1-68		21.3 to 282	31.8 to 412
		0 7 2 7	HSR-M1LA	■ 1-192		21.3 to 50.2 31.8 to 81.5 13.8 to 210 23.8 to 310 21.3 to 518 31.8 to 728	
			HSR-CA	■ 1-82	→ ↓ ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	13.8 to 210	23.8 to 310
be			HSR-HA	■ 1-82		21.3 to 518	31.8 to 728
4-way equal load type			HSR-B	■ 1-70		8.33 to 210	13.5 to 310
dnal le	Full-ball LM Guide -		HSR-M1B	■ 1-194		8.33 to 37.3	13.5 to 61.1
vay e	heavy-load, high rigidity types		HSR-LB	■ 1-70		21.3 to 282	31.8 to 412
4	rigidity types		HSR-M1LB	■ 1-194		21.3 to 50.2	31.8 to 81.5
			HSR-CB	■ 1-84		13.8 to 210	23.8 to 310
			HSR-HB	■ 1-84		21.3 to 518	31.8 to 728
			HSR-R	■ 1-76		1.08 to 210	2.16 to 310
			HSR-M1R	■ 1-196		8.33 to 37.3	13.5 to 61.1
			HSR-LR	■ 1-76		21.3 to 282	31.8 to 412
			HSR-M1LR	■ 1-196		21.3 to 50.2	31.8 to 81.5
			HSR-HR	■ 1-86		351 to 518	506 to 728
	Full-ball LM Guide -	Û	HSR-YR	▶B 1-80		8.33 to 141	13.5 to 215
	side mount types		HSR-M1YR	▶B 1-198		8.33 to 37.3	13.5 to 61.1

^{*}For specification tables for each model, please see the separate "B Product Specifications".

External dimensions (mm)					
Height	Width	Features	Major application		
24 to 90	47 to 170				
24 to 90	47 to 170	Long service life, long-term maintenance-free operation Low dust generation, low noise, acceptable running sound			
24 to 90	34 to 126	 Superbly high speed Smooth motion in all mounting orientations 			
24 to 90	34 to 126	 Heavy load, high rigidity Has dimensions almost the same as that of the full-ball type LM 			
28 to 80	34 to 100	Guide model HSR, which is practically a global standard size Superb capability of absorbing mounting error	Machining center		
28 to 80	34 to 100		NC lathe XYZ axes of heavy cut-		
24 to 110	47 to 215		ting machine toolsGrinding head feeding axis of grinding		
24 to 48	47 to 100		machines Components requiring a		
30 to 110	63 to 215		heavy moment and high accuracy NC milling machine Horizontal milling machine Gantry five axis milling machine Z axis of electric discharge machines Wire-cut electric discharge machine C ar elevator Food-related machine Testing machine Vehicle doors		
30 to 48	63 to 100				
30 to 110	63 to 215				
30 to 145	63 to 350				
24 to 110	47 to 215	Heavy load, high rigidity			
24 to 48	47 to 100	Practically a global standard size Superb capability of absorbing mounting error			
30 to 110	63 to 215	 Stainless steel type also available as standard Type M1, achieving max service temperature of 150°C, also available 			
30 to 48	63 to 100	Type M2, with high corrosion resistance, also available (Basic dynamic load rating: 2.33 to 5.57 kN)	Printed circuit board drilling machine		
30 to 110	63 to 215	(Basic static load rating: 2.03 to 5.16 kN)	ATCConstruction equipmentShield machine		
30 to 145	63 to 350		Semiconductor/liquid crystal manufacturing		
11 to 110	16 to 156		equipment		
28 to 55	34 to 70				
30 to 110	44 to 156				
30 to 55	44 to 70				
120 to 145	250 to 266				
28 to 90	33.5 to 124.5	 Easy mounting and reduced mounting height when using 2 units opposed to each other since the side faces of the LM block have mounting holes Heavy load, high rigidity Superb capability of absorbing mounting error Stainless steel type also available as standard 	 Cross rails of gantry machine tools Z axis of woodworking machines 		
28 to 55	33.5 to 69.5	■ Type M1, achieving max service temperature of 150°C, also available	 Z axis of measuring instruments Components opposed to each other 		

						Basic load rating (kN)		
	Classification	Туре		Specifica- tion Table*	Load capacity diagram	Basic dynamic load rating	Basic static load rating	
	Full-Complement		JR-A	■ 1-172	ţ	19.9 to 88.5	34.4 to 137	
	LM Guides - special LM rail	TH.	JR-B	■ 1-172	→ ੈ +	19.9 to 88.5	34.4 to 137	
	types	UF!	JR-R	■ 1-172	1	19.9 to 88.5	34.4 to 137	
	Caged Ball Cross LM Guide		SCR	▶B 1-58	→ ↓ ←	36.8 to 253	64.7 to 408	
	Full-Complement LM Guide orthogonal type		CSR	▶B 1-162		8.33 to 80.4	13.5 to 127.5	
ad type	Caged Ball LM Guide - wide, low center of gravity types		SHW-CA	▶B 1-44	↓ →	4.31 to 70.2	5.66 to 91.4	
4-way equal load type			SHW-CR, HR	▶1 -46		4.31 to 70.2	5.66 to 91.4	
4-w	Full-Complement Ball LM Guide - wide, low center of gravity types		HRW-CA	▶1 -114		4.31 to 63.8	81.4 to 102	
			HRW-CR, LR	▶1 -116		3.29 to 50.2	7.16 to 81.5	
	Full-ball Straight - Curved Guide	<u> </u>	HMG	▶B 1-182	→ ↓ ←	2.56 to 66.2	Straight section 4.23 to 66.7 Curved section 0.44 to 36.2	
	Caged Ball LM Guides Finite stroke		Model EPF	▶B 1-64	↓ → ∴ ←	0.90 to 3.71	1.60 to 5.88	
	Full-Complement Ball		HR, HR-T	▶B 1-146	↓ → \= \= ← ↑	1.57 to 141	3.04 to 206	
geable ins	LM Guide - separate types	T (-)	GSR-T	■ 1-154	†	5.69 to 25.1	8.43 to 33.8	
Interchangeable designs			GSR-V	▶B 1-154	→ # # †	4.31 to 10.29	5.59 to 12.65	
* Core	*For specification tables for each model inlease see the separate "B Product Specifications"							

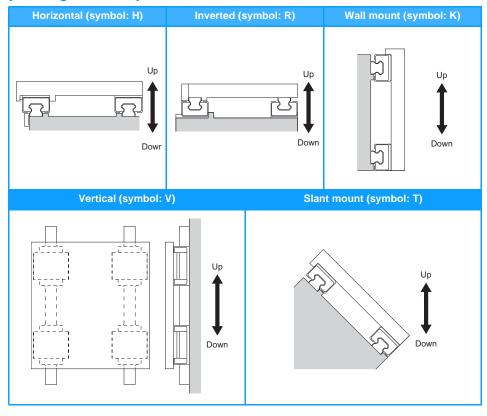
^{*}For specification tables for each model, please see the separate " Product Specifications".

External dimensions (mm)						
Height	Width	Features	Major application			
61 to 114	70 to 140	Since the central part of the LM rail is thinly structured, the LM Guide is capa-	 Automated warehouse Garage Lifter Crane 			
61 to 114	70 to 140	ble of absorbing an error and achieving smooth motion if the parallelism between the two axes is poor Since the LM rail has a highly rigid sec-	 Gantry robot FMS traveling rail Lift Forklift Coating machine Shield machine 			
65 to 124	48 to 100	tional shape, it can be used as a struc- tural member	 Conveyance system Welding machine Stage setting 			
70 to 180	88 to 226	A compact XY structure is allowed due to an XY orthogonal, single-piece LM block Since a saddle-less structure is allowed, the machine can be lightweighted and compactly designed Long service life, long-term maintenance- free operation Low dust generation, low noise, accept- able running sound Superbly high speed	Low center of gravity, precision XY table NC lathe Optical measuring instrument Automatic lathe Inspection equipment Cartesian coordinate robot Bonding machine XY axes of horizontal			
47 to 118	38.8 to 129.8	A compact XY structure is allowed due to an XY orthogonal, single-piece LM block Since a saddle-less structure is allowed, the machine can be lightweighted and compactly designed	machining center			
12 to 50	40 to 162	 Long service life, long-term maintenance- free operation Low dust generation, low noise, accept- able running sound Superbly high speed 				
12 to 50	30 to 130	Smooth motion in all mounting orientations Wide, low center of gravity, space saving structure Stainless steel type also available as standard	Z axis of IC printed circuit board drilling machine Z axis of small electric discharge machine Loader Machining center Machining center Construction equipment Construction equipment			
17 to 60	60 to 200		Machining center NC lathe Robot Wire-cut electric discharge machine Construction equipment Railroad vehicle Railroad vehicle			
12 to 50	30 to 130	Stainless steel type also available as standard				
24 to 90	47 to 170	Freedom of design Cost reduction through simplified structure	Large swivel base Pendulum vehicle for railroad Pantagraph Control unit Optical measuring machine Tool grinder X-Ray machine			
8 to 16	17 to 32	Caged ball effect using a cage Smooth movement with minimal rolling variation 4-groove construction in a compact body	Semiconductor manufacturing equipment Medical equipment Inspection equipment Industrial machinery			
8.5 to 60	18 to 125	Low-Profile high rigidity, space saving structure Interchangeable with Cross-Roller Guide Preload can be adjusted Stainless steel type also available as standard	 XYZ axes of electric discharge machine Precision table XZ axes of NC lathe Assembly robot Conveyance system Machining center Wire-cut electric discharge machine Tool changer Woodworking machine 			
20 to 38	32 to 68	LM block and LM rail are both inter- changeable	Industrial robot Various conveyance systems Automated warehouse Palette changer Coating machine			
20 to 30	32 to 50	 Preload can be adjusted Capable of absorbing vertical level error and horizontal tolerance for parallelism 	ATC Door closing device Car washing machine			

Classification		Туре		Consider	Load capac	Basic load rating (kN)		
				Specifica- tion Table*	Load capac- ity diagram	Basic dynamic load rating	Basic static load rating	
Interchangeable designs	Full-Complement Ball LM Guides - LM rail-rack inter- grated type		GSR-R	▶B 1-158	↓ →====================================	10.29 to 25.1	12.65 to 33.8	
		Π →	SRS	▶ B 1-52		1.51 to 16.5	1.29 to 20.2	
	Caged Ball		SRS-N	1-02	+	3.48 to 9.71	3.34 to 8.55	
	LM Guides	∏ (}	SRS-W	▶B 1-54	→ Ľ ← †	2.01 to 9.12	1.94 to 8.55	
			SRS-WN	<u>□</u> 1-0+	·	4.20 to 12.4	4.37 to 12.1	
			RSR-M/K/V/T	▶B 1-122		0.18 to 8.82	0.27 to 12.7	
			RSR-M1V	■ 1-208		1.47 to 8.82	2.25 to 12.7	
	Full-Complement Ball LM Guides		RSR-N	■ 1-120		0.3 to 14.2	0.44 to 20.6	
			RSR-M1N	▶B 1-208	→ ♣ → †	2.6 to 14.2	3.96 to 20.6	
Miniature types			RSR-Z	■ 1-130		0.88 to 4.41	1.37 to 6.57	
ature	Full-Complement Ball LM Guide - wide types		RSR-WM/WV/WT	■ 1-124		0.25 to 6.66	0.47 to 9.8	
Minis			RSR-M1WV	▶B 1-210		2.45 to 6.66	3.92 to 9.8	
			RSR-WN	▶B 1-124		0.39 to 9.91	0.75 to 14.9	
			RSR-M1WN	■ 1-210		3.52 to 9.91	5.37 to 14.9	
			RSR-WZ	■ 1-132		1.37 to 6.66	2.16 to 9.8	
	Full-Complement Ball LM Guide -		RSH, RSH-K, RSH-V	■ 1-136		0.88 to 2.65	1.37 to 4.02	
	ball-retaining plate types		RSH-Z	■ 1-140		0.88 to 4.41	1.37 to 6.57	
	Full-Complement Ball LM Guide - orthogonal type		MX	▶B 1-168		0.59 to 2.04	1.1 to 3.21	
Circular arc types	Full-Complement Ball LM Guides		HCR	▶ ■1-178	↓ ←	4.7 to 141	8.53 to 215	
Self-aligning types	Full-Complement Ball LM Guides	N	NSR-TBC	▶■ 1-188	↓ ↑ †	9.41 to 90.8	18.6 to 152	
♥ Eor o		oh model inlaac	o coo the congrate		Considerations"			

^{*}For specification tables for each model, please see the separate "B Product Specifications".

External dimensions (mm)					
Height	Width	Features	Major application		
30 to 38	59.91 to 80.18	LM rail-rack integrated design eliminates assembly and adjustment work LM rail-rack integrated design enables a space-saving structure to be achieved Capable of supporting long strokes	Industrial robot Various conveyance systems Automated warehouse Palette changer ATC Door closing device		
8 to 25	17 to 48	 Long service life, long-term maintenance- free operation 	IC/LSI manufacturing Electronic components of		
10 to 16	20 to 32	 Low dust generation, low noise, acceptable running sound Superbly high speed 	machine electron microscope Hard disc drive Optical stage Slide unit of OA equipment Stepper		
9 to 16	25 to 60	 Smooth motion in all mounting orientations Stainless steel type also available as 	Wafer transfer equipment Printed circuit board assembly table Printed by table Printed circuit board assembly table Pred mechanism of IC bonding machine		
12 to 16	30 to 60	standard Lightweight and compact	Medical equipment Inspection equipment		
4 to 25	8 to 46				
10 to 25	20 to 46	Stainless steel type also available as standard			
4 to 25	8 to 46	Long type with increased load capacity also offered as standard Type M1, achieving max service temper-			
10 to 25	20 to 46	ature of 150°C, also available			
8 to 16	17 to 32		IC/LSI manufacturing machine Hard disc drive Slide unit of OA equipment		
4.5 to 16	12 to 60		Wafer transfer equipment Printed circuit board assembly table Medical equipment Electronic components of electron microscope Optical stage Stepper Plotting machine Feed mechanism of IC bonding machine Inspection equipment		
12 to 16	30 to 60	Stainless steel type also available as standard			
4.5 to 16	12 to 60	Long type with increased load capacity also offered as standard Type M1, achieving max service temper-			
12 to 16	30 to 60	ature of 150°C, also available			
9 to 16	25 to 60				
8 to 13	17 to 27	 Equipped with a ball retainer Stainless steel type also available as 			
8 to 16	17 to 32	standard			
10 to 14.5	15.2 to 30.2	A compact XY structure is allowed due to an XY orthogonal, single-piece LM block Stainless steel type also available as standard	IC/LSI manufacturing machine Inspection equipment Slide unit of OA equipment Wafer transfer equipment Feed mechanism of IC bonding machine Found mechanism of IC bonding machine III between III be		
18 to 90	39 to 170	Circular motion guide in a 4-way equal load design Highly accurate circular motion without play Allows an efficient design with the LM block placed in the loading point Large circular motion easily achieved	Large swivel base Pendulum vehicle for railroad Pantagraph Control unit Optical measuring machine Tool grinder X-Ray machine Tool changer		
40 to 105	70 to 175	Can be used in rough mount due to self- aligning on the fit surface of the case Preload can be adjusted Can be mounted on a black steel sheet	XY axes of ordinary industrial machinery Various conveyance systems Automated warehouse Palette changer Automatic coating machine Various welding machines		


Setting Conditions

Conditions of the LM Guide

[Mounting Orientation]

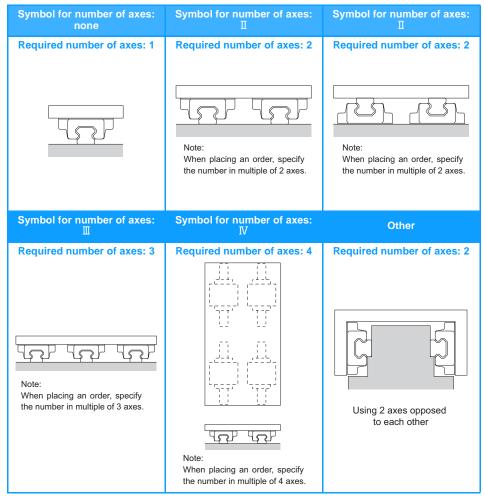
The LM Guide can be mounted in the following five orientations. If oil is to be used as a lubricant, it is necessary to change the lubrication routing and the related settings. When ordering an LM Guide, please specify the mounting orientation.

[Mounting Orientation]

[Symbol for Number of Axes]

With the LM Guide, the normal and high-accuracy grades are interchangeable when two or more units of the LM Guide are used in combination on the same plane. However, when using two or more units of a model of precision or higher grade, or with a radial clearance of C1 or C0, specify the number of LM rails (symbol for number of axes) in advance.

(For accuracy standards and radial clearance standards, see ▲1-94 and ▲1-89, respectively.)


Model number coding

SHS25C2SSCO+1000LP - II

Model number (details are given on the corresponding page of the model)

Symbol for number of axes ("II" indicates 2 axes. No symbol for a single axis)

[Symbol for Number of Axes]

[Service environment]

Lubrication

When using an LM system, it is necessary to provide effective lubrication. Without lubrication, the rolling elements or the raceway may be worn faster and the service life may be shortened.

A lubricant has effects such as the following.

- (1) Minimizes friction in moving elements to prevent seizure and reduce wear.
- (2) Forms an oil film on the raceway to decrease stress acting on the surface and extend rolling fatique life.
- (3) Covers the metal surface to prevent rust formation.

To fully bring out an LM system's functions, it is necessary to provide lubrication according to the conditions.

Even with an LM system with seals, the internal lubricant gradually seeps out during operation. Therefore, the system needs to be lubricated at an appropriate interval according to the conditions.

Corrosion Prevention

■Determining a Material

Any LM system requires a material that meets the environments. For use in environments where corrosion resistance is required, some LM system models can use martensite stainless steel.

(Martensite stainless steel can be used for LM Guide models SSR, SHW, SRS, HSR, SR, HRW, RSR, RSR-Z, RSH RSH-Z and HR.)

The HSR series includes HSR-M2, a highly corrosion resistant LM Guide using austenite stainless steel, which has high anti-corrosive effect. For details, see \$\textstyle{\textstyle{\textstyle{1}}}\$1-274.

■Surface Treatment

The surfaces of the rails and shafts of LM systems can be treated for anti-corrosive or aesthetic pur-

THK offers THK-AP treatment, which is the optimum surface treatment for LM systems.

There are roughly three types of THK-AP treatment: AP-HC, AP-C, and AP-CF. (See ▲0-20.)

Contamination Protection

When foreign material enters an LM system, it will cause abnormal wear or shorten the service life, and it is necessary to prevent foreign material from entering the system. When entrance of foreign material is predicted, it is important to select an effective sealing device or dust-control device that meets the environment conditions.

THK offers contamination protection accessories for LM Guides by model number, such as end seals made of special synthetic rubber with high wear resistance, and side seals and inner seals for further increasing dust-prevention effect.

In addition, for locations with adverse environment, Laminated Contact Scraper LaCS and dedicated bellows are available by model number. Also, THK offers dedicated caps for LM rail mounting holes, designed to prevent cutting chips from entering the LM rail mounting holes.

When it is required to provide contamination protection for a Ball Screw in an environment exposed to cutting chips and moisture, we recommend using a telescopic cover that protects the whole system or a large bellows.

[Special environments]

Clean Room

In a clean environment generation of dust from the LM system has to be reduced and anti-rust oil cannot be used. Therefore, it is necessary to increase the corrosion resistance of the LM system. In addition, depending on the level of cleanliness, a dust collector is required.

Dust Generation from the LM System

■ Measure to Prevent Dust Generation Resulting from Flying Grease

THK AFE-CA and AFF Grease

Use environmentally clean grease that produces little dust.

■ Measure to Reduce Dust Generation Resulting from Metallic Abrasion Dust

Caged Ball LM Guide

Use the Caged Ball LM Guide, which has no friction between balls and generates little metallic abrasion dust, to allow generation of dust to be minimized.

Corrosion Prevention

■ Material-based Measure

Stainless Steel LM Guide

This LM Guide uses martensite stainless steel, which has corrosion resistant effect.

Highly Corrosion Resistant LM Guide

It uses austenite stainless steel, which has a high corrosion resistant effect, in its LM rail.

■ Measure Through Surface Treatment

THK AP-HC, AP-C and AP-CF Treatment

The LM system is surface treated to increase corrosion resistance.

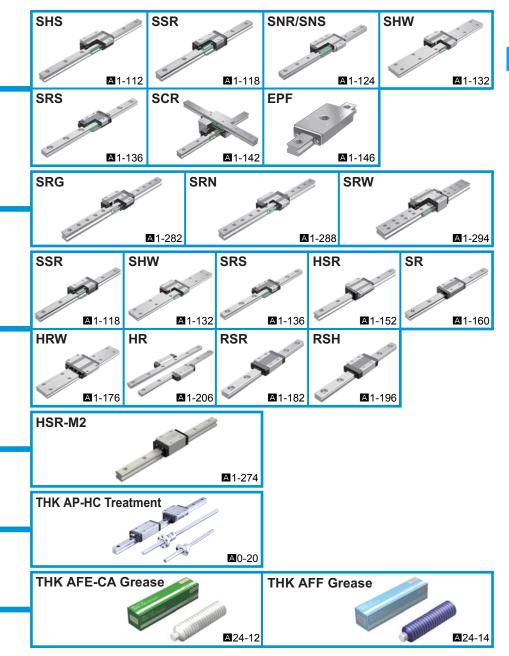
Caged Ball LM Guide

SHS SSR SNR/SNS SHW SRS SCR EPF

Caged Roller LM Guide

SRG SRN SRW

Stainless Steel LM Guide



SSR SHW SRS HSR SR HRW HR RSR RSH

Highly Corrosion Resistant LM Guide

Surface Treatment

Grease

Vacuum

In a vacuum environment, measures to prevent gas from being emitted from a resin and grease from flying are required and anti-rust oil cannot be used. Therefore, it is necessary to select a product with high corrosion resistance.

■ Measure to Prevent Emission of Gas from Resin

Stainless Steel LM Guide

It uses stainless steel in the endplate (ball circulation unit made of resin) of the LM block to reduce emission of gas.

■ Measure to Prevent Grease from Evaporating

Vacuum Grease

If a general-purpose grease is used in a vacuum environment, oil contained in the grease evaporates and the grease looses lubricity. Therefore, use a vacuum grease that uses fluorine based oil, whose vapor pressure is low, as the base oil.

■Corrosion Prevention

Stainless Steel LM Guide

In a vacuum environment, use a stainless steel LM Guide, which is highly corrosion resistant.

High Temperature LM Guide

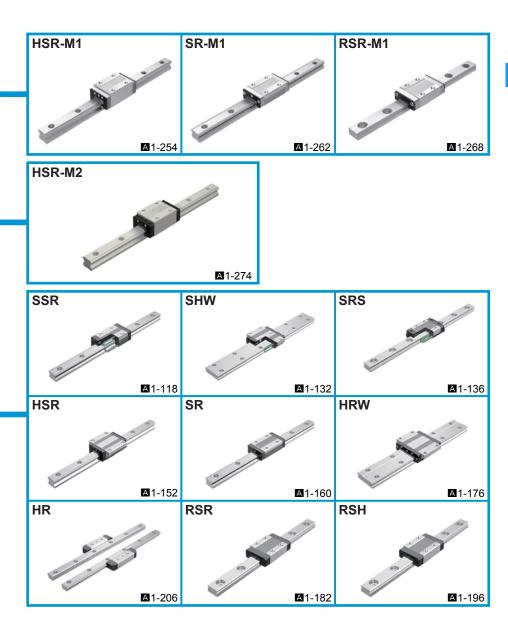
If high temperature is predicted due to baking, use a High Temperature LM Guide, which is highly resistant to heat and corrosion.

Highly Corrosion Resistant LM Guide

This LM Guide uses austenite stainless steel, which has a high anti-corrosion effect, in the LM rail.

High Temperature LM Guide

HSR-M1 SR-M1 RSR-M1


Highly Corrosion
Resistant LM Guide

Stainless Steel I M Guide

SSR SHW SRS HSR SR HRW HR RSR RSH

Vacuum Grease

Corrosion **Prevention**

As with clean room applications, it is necessary to increase corrosion resistance through material selection and surface treatment.

■ Material-based Measure

Stainless Steel LM Guide

This LM Guide uses martensite stainless steel, which has an anti-corrosion effect.

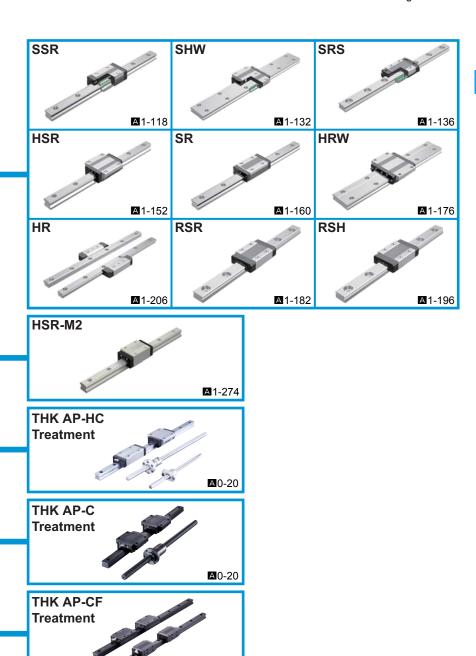
Highly Corrosion Resistant LM Guide

It uses austenite stainless steel, which has a high anti-corrosion effect, in its LM rail.

■ Measure Through Surface Treatment

THK AP-HC, AP-C and AP-CF Treatment

The LM system is surface treated to increase corrosion resistance.


Stainless Steel LM Guide

Supported SSR SHW SRS HSR SR HRW HR RSR RSH

Highly Corrosion Resistant LM Guide

Surface Treatment

A0-20

High Speed

In a high speed environment, it is necessary to apply an optimum lubrication method that reduces heat generation during high speed operation and increases grease retention.

■ Measures to Reduce Heat Generation

Caged Ball LM Guide

Use of a ball cage eliminates friction between balls to reduce heat generation. In addition, grease retention is increased, thus to achieve long service life and high speed operation.

High Speed Ball Screw with Ball Cage

Use of a ball cage and an ideal ball recirculation structure enables fast feeding, which conventional products have not achieved.

THK AFG Grease

It reduces heat generation in high speed operation and has superb lubricity.

■ Measure to Improve Lubrication

QZ Lubricator

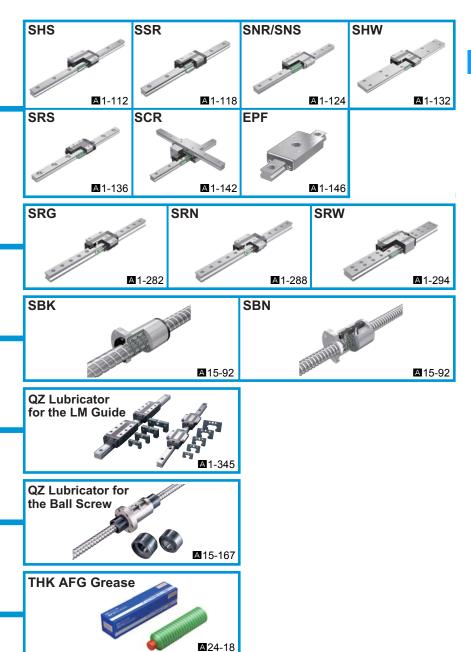
Continuous oil lubrication ensures that the lubrication and maintenance interval can significantly be extended. It also applies the right amount of oil to the raceway, making itself an eco-friendly lubrication system that does not contaminate the surrounding area.

Caged Ball LM Guide

SHS SSR SNR/SNS SHW SRS SCR EPF

Caged Roller LM Guide

SRG SRN SRW


High Speed Ball Screw with Ball Cage

SBK SBN

QZ Lubricator

Grease

High Temperature

In a high temperature environment, dimensional alteration caused by heat is problematic. Use a High Temperature LM Guide, which is heat resistant and whose dimensions little change after being heated, and a high temperature grease.

■Heat Resistance

High Temperature LM Guide

It is an LM Guide that is highly resistant to heat and whose dimensions little change after being heated and cooled.

■Grease

High Temperature Grease

Use a high temperature grease with which the rolling resistance of the LM system little fluctuates even temperature changes from a normal to high range.

Low Temperature

Use an LM system whose resin component are little affected by low temperature, as a measure to increase corrosion resistance in transition from normal to low temperature, and a grease with a low rolling resistance fluctuation even at low temperature.

■Impact of Low Temperature on Resin Components

Stainless Steel LM Guide

The endplate (ball circulation path normally made of resin) of the LM block is made of stainless steel.

■Corrosion Prevention

Provide surface treatment to the LM system to increase its corrosion resistance.

Grease

Use THK AFC Grease, with which the rolling resistance of the system little fluctuates even at low temperature.

Micro Motion

Micro strokes cause oil film break and poor lubrication, resulting in early wear. In such cases, select a grease with which the oil film strength is high and an oil film can easily be formed.

■Grease

THK AFC Grease

AFC Grease is a urea-based grease that excels in oil film strength and wear resistance.

High Temperature

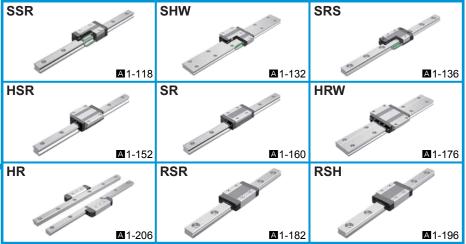
HSR-M1 SR-M1 RSR-M1

High Temperature Grease

Stainless Steel LM Guide

SSR SHW SRS HSR SR HRW HR RSR RSH

Surface Treatment


Grease

Grease

Foreign Matter

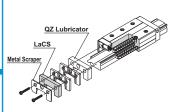
If foreign matter enters the LM system, it will cause abnormal wear and shorten the service life. Therefore, it is necessary to prevent such entrance of foreign matter.

Especially in an environment containing small foreign matter or a water-soluble coolant that a telescopic cover or a bellows cannot remove, it is necessary to attach a contamination protection accessory capable of efficiently removing foreign matter.

■Metal Scraper

It is used to remove relatively large foreign objects such as cutting chips, spatter and sand or hard foreign matter that adhere to the LM rail.

■ Laminated Contact Scraper LaCS

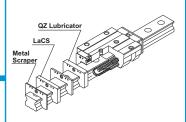

Unlike a metal scraper, it removes foreign matter while it is in contact with the LM rail. Therefore, it demonstrates a high contamination protection effect against small foreign matter, which has been difficult to remove with conventional metal scrapers.

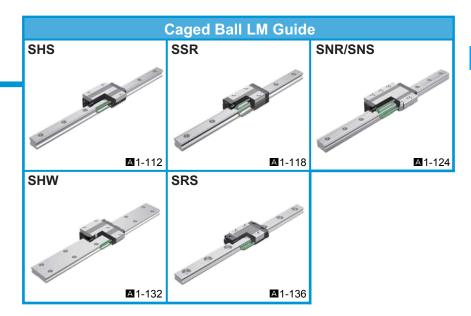
■QZ Lubricator

QZ Lubricator is a lubrication system that feeds the right amount of lubricant by closely contacting its highly oil-impregnated fiber net to the ball raceway.

LM Guide

- +Metal Scraper
- +Laminated Contact Scraper LaCS
- **+QZ** Lubricator




Caged Ball LM Guide SHS SSR SNR/SNS SHW SRS Full Ball LM Guide HSR NR/NRS

Caged Roller LM Guide

- +Metal Scraper
- +Laminated Contact Scraper LaCS
- **+QZ** Lubricator

Calculating the Applied Load

The LM Guide is capable of receiving loads and moments in all directions that are generated due to the mounting orientation, alignment, gravity center position of a traveling object, thrust position and cutting resistance.

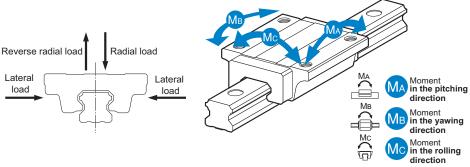
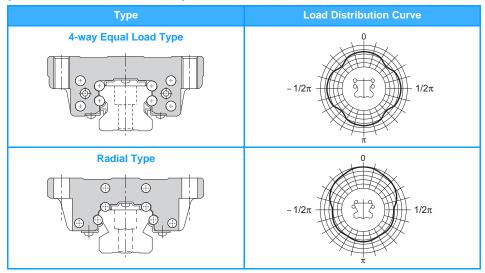



Fig.1 Directions of the Loads Applied on the LM Guide

Rated Load of an LM Guide in Each Direction

The LM Guide is categorized into roughly two types: the 4-way equal load type, which has the same rated load in the radial, reverse radial and lateral directions, and the radial type, which has a large rated load in the radial direction. With the radial type LM Guide, the rated load in the radial direction is different from that in the reverse radial and lateral directions. When such loads are applied, multiply the basic load rating by the corresponding factor. Those factors are specified in the respective sections.

[Rated Loads in All Directions]

Calculating an Applied Load

[Single-Axis Use]

Moment Equivalence

When the installation space for the LM Guide is limited, you may have to use only one LM block, or double LM blocks closely contacting with each other. In such a setting, the load distribution is not uniform and, as a result, an excessive load is applied in localized areas (i.e., both ends) as shown in Fig.2. Continued use under such conditions may result in flaking in those areas, consequently shortening the service life. In such a case, calculate the actual load by multiplying the moment value by any one of the equivalent-moment factors specified in Table1 to Table9.

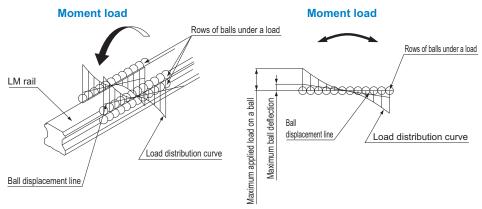


Fig.2 Ball Load when a Moment is Applied

An equivalent-load equation applicable when a moment acts on an LM Guide is shown below.

$P = K \cdot M$

P : Equivalent load per LM Guide (N)

K : Equivalent moment factor

M : Applied moment (N-mm)

Equivalent Factor

Since the rated load is equivalent to the permissible moment, the equivalent factor to be multiplied when equalizing the M_A , M_B and M_C moments to the applied load per block is obtained by dividing the rated loads in the corresponding directions.

With those models other than 4-way equal load types, however, the load ratings in the 4 directions differ from each other. Therefore, the equivalent factor values for the M_A and M_C moments also differ depending on whether the direction is radial or reverse radial.

■Equivalent Factors for the M_A Moment

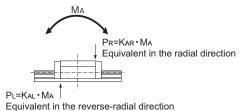
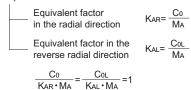



Fig.3 Equivalent Factors for the M_A Moment

Equivalent factors for the MA Moment

■Equivalent Factors for the M_B Moment

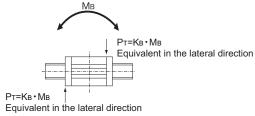
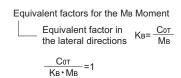



Fig.4 Equivalent Factors for the M_B Moment

■Equivalent Factors for the M_c Moment

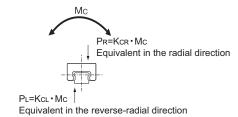


Fig.5 Equivalent Factors for the Mc Moment

Equivalent factors for the Mc Moment

Equivalent factor in the radial direction Equivalent factor in the reverse radial direction

$$\frac{C_0}{\text{Kcr} \cdot \text{Mc}} = \frac{C_{0L}}{\text{Kcl} \cdot \text{Mc}} = 1$$

C_0	: Basic static load rating (radial direction)	(N)
C_{0L}	: Basic static load rating (reverse radial direction)	(N)
$C_{\text{от}}$: Basic static load rating (lateral direction)	(N)
P_{R}	: Calculated load (radial direction)	(N)
P_L	: Calculated load (reverse radial direction)	(N)
P_{T}	: Calculated load (lateral direction)	(N)

Table1 Equivalent Factors (Models SHS, SSR and SNR)

Maa	lal Nia				Equivale	ent factor			
IVIOC	del No.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl
	15	1.38	× 10 ⁻¹	2.69	× 10 ⁻²	1.38×10 ⁻¹	2.69×10 ⁻²	1.50	×10 ⁻¹
	15L	1.07	× 10 ⁻¹	2.22	× 10 ⁻²	1.07×10 ⁻¹	2.22×10 ⁻²	1.50	× 10 ⁻¹
	20	1.15	× 10 ⁻¹	2.18	× 10 ⁻²	1.15×10 ⁻¹	2.18×10 ⁻²	1.06	× 10 ⁻¹
	20L	8.85	× 10 ⁻²	1.79×10 ⁻²		8.85×10 ⁻²	1.79×10 ⁻²	1.06	×10 ⁻¹
	25	9.25	X 10 ⁻²	1.90	× 10 ⁻²	9.25×10 ⁻²	1.90×10 ⁻²	9.29	×10 ⁻²
	25L	7.62	× 10 ⁻²	1.62	× 10 ⁻²	7.62×10 ⁻²	1.62×10 ⁻²	9.29	×10 ⁻²
	30	8.47×10 ⁻²		1.63	× 10 ⁻²	8.47×10 ⁻²	1.63×10 ⁻²	7.69	×10 ⁻²
CLIC	30L	6.52×10 ⁻²		1.34	× 10 ⁻²	6.52×10 ⁻²	1.34×10 ⁻²	7.69	×10 ⁻²
SHS	35	6.95×10 ⁻²		1.43	× 10 ⁻²	6.95×10 ⁻²	1.43×10 ⁻²	6.29	×10 ⁻²
	35L	5.43	X 10 ⁻²	1.16	× 10 ⁻²	5.43×10 ⁻²	1.16×10 ⁻²	6.29	×10 ⁻²
	45	6.13	X 10 ⁻²	1.24	× 10 ⁻²	6.13×10 ⁻²	1.24 × 10 ⁻²	4.69	×10 ⁻²
	45L	4.79	X 10 ⁻²	1.02	× 10 ⁻²	4.79×10 ⁻²	1.02×10 ⁻²	4.69	× 10 ⁻²
	55	4.97	X 10 ⁻²	1.02	× 10 ⁻²	4.97×10 ⁻²	1.02×10 ⁻²	4.02	×10 ⁻²
	55L	3.88	X 10 ⁻²	8.30	× 10 ⁻³	3.88×10 ⁻²	8.30×10 ⁻³	4.02	×10 ⁻²
	65	3.87	X 10 ⁻²	7.91×10 ⁻³		3.87×10 ⁻²	7.91×10 ⁻³	3.40	×10 ⁻²
	65L	3.06	× 10 ⁻²	6.51	×10 ⁻³	3.06×10 ⁻²	6.51×10 ⁻³	3.40	×10 ⁻²
	15XW (TB)	2.08×10 ⁻¹	1.04×10 ⁻¹	3.75×10 ⁻²	1.87×10 ⁻²	1.46×10 ⁻¹	2.59×10 ⁻²	1.71×10 ⁻¹	8.57×10 ⁻²
	15XV	3.19×10 ⁻¹	1.60×10 ⁻¹	5.03×10 ⁻²	2.51×10 ⁻²	2.20×10 ⁻¹	3.41×10 ⁻²	1.71×10 ⁻¹	8.57×10 ⁻²
	20XW (TB)	1.69×10 ⁻¹	8.46×10 ⁻²	3.23×10 ⁻²	1.62×10 ⁻²	1.19×10 ⁻¹	2.25×10 ⁻²	1.29×10 ⁻¹	6.44×10 ⁻²
SSR	20XV	2.75×10 ⁻¹	1.37×10 ⁻¹	4.28×10 ⁻²	2.14×10 ⁻²	1.89×10 ⁻¹	2.89×10 ⁻²	1.29×10 ⁻¹	6.44×10 ⁻²
JJIN	25XW (TB)	1.41×10 ⁻¹	7.05×10 ⁻²	2.56×10 ⁻²	1.28×10 ⁻²	9.86×10 ⁻²	1.77×10 ⁻²	1.10×10 ⁻¹	5.51×10 ⁻²
	25XV	2.15×10 ⁻¹	1.08×10 ⁻¹	3.40×10 ⁻²	1.70×10 ⁻²	1.48×10 ⁻¹	2.31×10 ⁻²	1.10×10 ⁻¹	5.51×10 ⁻²
	30XW	1.18×10 ⁻¹	5.91×10 ⁻²	2.19×10 ⁻²	1.10×10 ⁻²	8.26×10 ⁻²	1.52×10 ⁻²	9.22×10 ⁻²	4.61×10 ⁻²
	35XW	1.01×10 ⁻¹	5.03×10 ⁻²	1.92×10 ⁻²	9.60×10 ⁻³	7.04×10 ⁻²	1.33×10 ⁻²	7.64×10 ⁻²	3.82×10 ⁻²
	25	1.16×10 ⁻¹	7.41×10 ⁻²	2.18×10 ⁻²	1.40×10 ⁻²	7.02×10 ⁻²	1.33×10 ⁻²	9.09×10 ⁻²	5.82×10 ⁻²
	25L	8.79×10 ⁻²	5.62×10 ⁻²	1.82×10 ⁻²	1.16×10 ⁻²	5.41×10 ⁻²	1.13×10 ⁻²	9.09×10 ⁻²	5.82×10 ⁻²
	30	1.02×10 ⁻¹	6.51×10 ⁻²	1.86×10 ⁻²	1.19×10 ⁻²	6.16×10 ⁻²	1.13×10 ⁻²	8.11×10 ⁻²	5.19×10 ⁻²
	30L	7.60×10 ⁻²	4.87×10 ⁻²	1.55×10 ⁻²	9.93×10 ⁻³	4.68×10 ⁻²	9.58×10 ⁻³	8.11×10 ⁻²	5.19×10 ⁻²
	35	8.92×10 ⁻²	5.71×10 ⁻²	1.67×10 ⁻²	1.07×10 ⁻²	5.40×10 ⁻²	1.01 × 10 ⁻²	6.73×10 ⁻²	4.31×10 ⁻²
	35L	7.01×10 ⁻²	4.48×10 ⁻²	1.37×10 ⁻²	8.79×10 ⁻³	4.27×10 ⁻²	8.41×10 ⁻³	6.73×10 ⁻²	4.31×10 ⁻²
SNR	45	6.55×10 ⁻²	4.19×10 ⁻²	1.35×10 ⁻²	8.62×10 ⁻³	4.03×10 ⁻²	8.32×10 ⁻³	5.10×10 ⁻²	3.27×10 ⁻²
	45L	5.32×10 ⁻²	3.41×10 ⁻²	1.10×10 ⁻²	7.01×10 ⁻³	3.26×10 ⁻²	6.73×10 ⁻³	5.10×10 ⁻²	3.27×10 ⁻²
	55	5.85×10 ⁻²	3.74×10 ⁻²	1.13×10 ⁻²	7.24×10 ⁻³	3.56×10 ⁻²	6.92×10 ⁻³	4.36×10 ⁻²	2.79×10 ⁻²
	55L	4.55×10 ⁻²	2.91×10 ⁻²	9.36×10 ⁻³	5.99×10 ⁻³	2.79×10 ⁻²	5.75×10 ⁻³	4.36×10 ⁻²	2.79×10 ⁻²
	65	5.07×10 ⁻²	3.25×10 ⁻²	9.92×10 ⁻³	6.35×10 ⁻³	3.09×10 ⁻²	6.06×10 ⁻³	3.70×10 ⁻²	2.37×10 ⁻²
	65L	3.58×10 ⁻²	2.29×10 ⁻²	7.67×10 ⁻³	4.91×10 ⁻³	2.21×10 ⁻²	4.75×10 ⁻³	3.70×10 ⁻²	2.37×10 ⁻²
	85L	2.92×10 ⁻²	1.87×10 ⁻²	6.20×10 ⁻³	4.00×10 ⁻³	1.80×10 ⁻²	3.80×10 ⁻³	2.78×10 ⁻²	1.78×10 ⁻²
K	Equivaler	nt factor in the	M. radial dire	ction when or	e K	: Equivalent fa	actor in the Ma	reverse radia	l direction

Karı: Equivalent factor in the Ma radial direction when one LM block is used

K_{AL1} : Equivalent factor in the M_A reverse radial direction when one LM block is used
K_{AR2} : Equivalent factor in the M_A radial direction when two

LM blocks are used in close contact with each other

KAL2 : Equivalent factor in the MA reverse radial direction when two LM blocks are used in close contact with each other

 $K_{\tt B1}$: $M_{\tt B}$ Equivalent factor when one LM block is used $K_{\tt B2}$: $M_{\tt B}$ Equivalent factor when two LM blocks are used in

close contact with each other

 $\begin{array}{ll} K_{\text{CR}} & : \text{Equivalent factor in the } M_{\text{C}} \text{ radial direction} \\ K_{\text{CL}} & : \text{Equivalent factor in the } M_{\text{C}} \text{ reverse radial direction} \end{array}$

Table2 Equivalent Factors (Models SNS, SHW and SRS)

Model No.					Equivale	nt factor			
		K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl
	25	1.12×10 ⁻¹	9.42×10 ⁻²	2.11×10 ⁻²	1.78×10 ⁻²	1.02×10 ⁻¹	1.91×10 ⁻²	9.41×10 ⁻²	7.90×10 ⁻²
	25L	8.52×10 ⁻²	7.16×10 ⁻²	1.77×10 ⁻²	1.48×10 ⁻²	7.73×10 ⁻²	1.60×10 ⁻²	9.41×10 ⁻²	7.90×10 ⁻²
	30	9.86×10 ⁻²	8.28×10 ⁻²	1.80×10 ⁻²	1.51×10 ⁻²	8.93×10 ⁻²	1.63×10 ⁻²	8.42×10 ⁻²	7.07×10 ⁻²
	30L	7.37×10 ⁻²	6.19×10 ⁻²	1.50×10 ⁻²	1.26×10 ⁻²	6.68×10 ⁻²	1.36×10 ⁻²	8.42×10 ⁻²	7.07×10 ⁻²
	35	8.64×10 ⁻²	7.26×10 ⁻²	1.61×10 ⁻²	1.36×10 ⁻²	7.83×10 ⁻²	1.46×10 ⁻²	7.01×10 ⁻²	5.89×10 ⁻²
	35L	6.80×10 ⁻²	5.71×10 ⁻²	1.33×10 ⁻²	1.12×10 ⁻²	6.17×10 ⁻²	1.21×10 ⁻²	7.01×10 ⁻²	5.89×10 ⁻²
SNS	45	6.34×10 ⁻²	5.33×10 ⁻²	1.30×10 ⁻²	1.10×10 ⁻²	5.75×10 ⁻²	1.18×10 ⁻²	5.27×10 ⁻²	4.43×10 ⁻²
	45L	5.17×10 ⁻² 4.34×10 ⁻²		1.06×10 ⁻²	8.94×10 ⁻³	4.69×10 ⁻²	9.64×10 ⁻³	5.27×10 ⁻²	4.43×10 ⁻²
	55	5.67×10 ⁻²	4.76×10 ⁻²	1.10×10 ⁻²	9.22×10 ⁻³	5.14×10 ⁻²	9.94×10 ⁻³	4.52×10 ⁻²	3.80×10 ⁻²
	55L	4.42×10 ⁻²	3.72×10 ⁻²	9.09×10 ⁻³	7.64×10 ⁻³	4.01×10 ⁻²	8.24×10 ⁻³	4.52×10 ⁻²	3.80×10 ⁻²
	65	4.92×10 ⁻²	4.13×10 ⁻²	9.62×10 ⁻³	8.08×10 ⁻³	4.46×10 ⁻²	8.71×10 ⁻³	3.82×10 ⁻²	3.21×10 ⁻²
	65L	3.47×10 ⁻²	2.92×10 ⁻²	7.45×10 ⁻³	6.26×10 ⁻³	3.15×10 ⁻²	6.75×10 ⁻³	3.82×10 ⁻²	3.21×10 ⁻²
	85L	2.83×10 ⁻²	2.38×10 ⁻²	6.00×10 ⁻³	5.10×10 ⁻³	2.57×10 ⁻²	5.50×10 ⁻³	2.86×10 ⁻²	2.40×10 ⁻²
	12	2.48	×10 ⁻¹	4.69	× 10 ⁻²	2.48×10 ⁻¹	4.69×10 ⁻²	1.40	×10 ⁻¹
	12HR	1.70	× 10 ⁻¹	3.52×10 ⁻²		1.70×10 ⁻¹	3.52×10 ⁻²	1.40	× 10 ⁻¹
	14	1.92×10 ⁻¹		3.80	× 10 ⁻²	1.92×10 ⁻¹	3.80×10 ⁻²	9.93	× 10 ⁻²
SHW	17	1.72×10 ⁻¹		3.41	× 10 ⁻²	1.72×10 ⁻¹	3.41×10 ⁻²	6.21	X 10 ⁻²
SITVV	21	1.59×10 ⁻¹		2.95	× 10 ⁻²	1.59×10 ⁻¹	2.95×10 ⁻²	5.57	X 10 ⁻²
	27	1.21	×10 ⁻¹	2.39	× 10 ⁻²	1.21×10 ⁻¹	2.39×10 ⁻²	4.99	× 10 ⁻²
	35	8.15	X 10 ⁻²	1.64×10 ⁻²		8.15×10 ⁻²	1.64×10 ⁻²	3.02	X 10 ⁻²
	50	6.22	× 10 ⁻²	1.24×10 ⁻²		6.22×10 ⁻²	1.24×10 ⁻²	2.30	× 10 ⁻²
	7	4.197	× 10⁻¹	7.46×10 ⁻²		4.18×10 ⁻¹	7.45×10 ⁻²	2.58	× 10 ⁻¹
	7W	3.01	× 10 ⁻¹	5.67×10 ⁻²		3.00×10 ⁻¹	5.66×10 ⁻²	1.36	× 10 ⁻¹
	9	2.95	×10 ⁻¹	5.26×10 ⁻²		3.04×10 ⁻¹	5.40×10 ⁻²	2.17	×10 ⁻¹
	9N	2.15	× 10 ⁻¹	4.10×10 ⁻²		2.21×10 ⁻¹	4.21×10 ⁻²	2.17	× 10 ⁻¹
	9W	2.37	×10 ⁻¹	4.25	× 10 ⁻²	2.44×10 ⁻¹	4.37×10 ⁻²	1.06	×10 ⁻¹
	9WN	1.74	×10 ⁻¹	3.35	× 10 ⁻²	1.78×10 ⁻¹	3.44×10 ⁻²	1.06	×10 ⁻¹
	12	2.94	×10 ⁻¹	4.50	× 10 ⁻²	2.94×10 ⁻¹	4.50×10 ⁻²	1.53	× 10 ⁻¹
SRS	12N	1.86	×10 ⁻¹	3.51	× 10 ⁻²	1.86×10 ⁻¹	3.51×10 ⁻²	1.53	×10 ⁻¹
SINO	12W	2.00	×10 ⁻¹	3.69	× 10 ⁻²	2.00×10 ⁻¹	3.69×10 ⁻²	7.97	× 10 ⁻²
	12WN	1.44	×10 ⁻¹	2.83	× 10 ⁻²	1.44×10 ⁻¹	2.83×10 ⁻²	7.97	× 10 ⁻²
	15	2.17	×10 ⁻¹	3.69	× 10 ⁻²	2.17×10 ⁻¹	3.69×10 ⁻²	1.41	×10 ⁻¹
	15N	1.43	× 10 ⁻¹	2.73	× 10 ⁻²	1.43×10 ⁻¹	2.73×10 ⁻²	1.41	× 10 ⁻¹
	15W	1.67	×10 ⁻¹	2.94	× 10 ⁻²	1.67×10 ⁻¹	2.94×10 ⁻²	4.83	× 10 ⁻²
	15WN	1.13	×10 ⁻¹	2.27	× 10 ⁻²	1.13×10 ⁻¹	2.27×10 ⁻²	4.83	× 10 ⁻²
	20	1.80	×10 ⁻¹	3.30	× 10 ⁻²	1.86×10 ⁻¹	3.41×10 ⁻²	9.34	×10 ⁻²
	25	1.14	×10 ⁻¹	2.17	× 10 ⁻²	1.14×10 ⁻¹	2.17×10 ⁻²	8.13	× 10 ⁻²

 K_{AR1} : Equivalent factor in the M_{A} radial direction when one LM block is used

 $K_{\text{AL}1}$: Equivalent factor in the M_{A} reverse radial direction when one LM block is used

Karz: Equivalent factor in the Ma radial direction when two LM blocks are used in close contact with each other

Kala: Equivalent factor in the Ma reverse radial direction when two LM blocks are used in close contact with each other

 K_{B1} : M_{B} Equivalent factor when one LM block is used K_{B2} : M_{B} Equivalent factor when two LM blocks are used in

close contact with each other

 $\begin{array}{ll} K_{\text{CR}} & : Equivalent \ factor \ in \ the \ M_{\text{C}} \ radial \ direction \\ K_{\text{CL}} & : Equivalent \ factor \ in \ the \ M_{\text{C}} \ reverse \ radial \ direction \\ \end{array}$

Table3 Equivalent Factors (Models SCR, EPF and HSR)

Mare	lal Nia				Equival	ent factor			
IVIOC	del No.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl
	25	9.25	× 10 ⁻²	1.90>	< 10 ⁻²	9.25×10 ⁻²	1.90×10 ⁻²	9.29	× 10 ⁻²
	30	8.47	× 10 ⁻²	1.63>	< 10 ⁻²	8.47×10 ⁻²	1.63×10 ⁻²	7.692	×10 ⁻²
SCR	35	6.95	X 10 ⁻²	1.43>	< 10 ⁻²	6.95×10 ⁻²	1.43×10 ⁻²	6.29	×10 ⁻²
	45	6.13	X 10 ⁻²	1.24>	< 10 ⁻²	6.13×10 ⁻²	1.24×10 ⁻²	4.692	×10 ⁻²
	65	3.87	X 10 ⁻²	7.91×10 ⁻³		3.87×10 ⁻²	7.91×10 ⁻³	3.40	×10 ⁻²
	7M	3.55	× 10 ⁻¹	_		3.55	×10 ⁻¹	2.862	×10-1
EPF	9M	3.10	× 10 ⁻¹	_	-	3.10	× 10 ⁻¹	2.22	×10-1
EPF	12M	2.683	× 10 ⁻¹	_		2.68	× 10 ⁻¹	1.67	×10 ⁻¹
	15M	2.00×10 ⁻¹		_	-	2.00	× 10 ⁻¹	1.34	×10 ⁻¹
	8	4.39	× 10 ⁻¹	6.75>	< 10 ⁻²	4.39×10 ⁻¹	6.75×10 ⁻²	2.97	×10 ⁻¹
	10	3.09×10 ⁻¹		5.33>	< 10 ⁻²	3.09×10 ⁻¹	5.33×10 ⁻²	2.35	× 10 ⁻¹
	12	2.083	× 10 ⁻¹	3.74>	< 10 ⁻²	2.08×10 ⁻¹	3.74×10 ⁻²	1.91	×10 ⁻¹
	15	1.68	× 10 ⁻¹	2.95>	< 10 ⁻²	1.68×10 ⁻¹	2.95×10 ⁻²	1.60	× 10 ⁻¹
	20	1.25	× 10 ⁻¹	2.28>	< 10 ⁻²	1.25×10 ⁻¹	2.28×10 ⁻²	1.182	×10 ⁻¹
	20L	9.83	× 10 ⁻²	1.91×10 ⁻²		9.83×10 ⁻²	1.91×10 ⁻²	1.18	× 10 ⁻¹
	25	1.12	× 10 ⁻¹	2.01×10 ⁻²		1.12×10 ⁻¹	2.01×10 ⁻²	1.00	×10 ⁻¹
	25L	8.66×10 ⁻²		1.68>	< 10 ⁻²	8.66×10 ⁻²	1.68×10 ⁻²	1.002	×10 ⁻¹
	30	8.93×10 ⁻²		1.73×10 ⁻²		8.93×10 ⁻²	1.73×10 ⁻²	8.31	×10 ⁻²
	30L	7.02	X 10 ⁻²	1.43×10 ⁻²		7.02×10 ⁻²	1.43×10 ⁻²	8.31	×10-2
	35	7.81	× 10 ⁻²	1.55×10 ⁻²		7.81×10 ⁻²	1.55×10 ⁻²	6.742	×10 ⁻²
	35L	6.15	X 10 ⁻²	1.28×10 ⁻²		6.15×10 ⁻²	1.28×10 ⁻²	6.74	×10 ⁻²
HSR	45	6.71	X 10 ⁻²	1.21×10 ⁻²		6.71×10 ⁻²	1.21×10 ⁻²	5.22	×10 ⁻²
пок	45L	5.20	X 10 ⁻²	1.00>	< 10 ⁻²	5.20×10 ⁻²	1.00×10 ⁻²	5.22	×10 ⁻²
	55	5.59	X 10 ⁻²	1.03>	< 10 ⁻²	5.59×10 ⁻²	1.03×10 ⁻²	4.27	×10 ⁻²
	55L	4.33	X 10 ⁻²	8.56>	<10 ⁻³	4.33×10 ⁻²	8.56×10 ⁻³	4.27	×10 ⁻²
	65	4.47	X 10 ⁻²	9.13>	<10 ⁻³	4.47×10 ⁻²	9.13×10 ⁻³	3.692	×10 ⁻²
	65L	3.28	X 10 ⁻²	7.06>	<10 ⁻³	3.28×10 ⁻²	7.06×10 ⁻³	3.692	×10 ⁻²
	85	3.73	X 10 ⁻²	6.80>	< 10 ⁻³	3.73×10 ⁻²	6.80×10 ⁻³	2.79	×10 ⁻²
	85L	2.89	X 10 ⁻²	5.68>	<10 ⁻³	2.89×10 ⁻²	5.68×10 ⁻³	2.792	×10 ⁻²
	100	2.60	×10 ⁻²	5.15>	<10 ⁻³	2.60×10 ⁻²	5.15×10 ⁻³	2.25	×10 ⁻²
	120	2.36	×10 ⁻²	4.72>	< 10 ⁻³	2.36×10 ⁻²	4.72×10 ⁻³	1.97	× 10 ⁻²
	150	2.17	×10 ⁻²	4.35>	<10 ⁻³	2.17×10 ⁻²	4.35×10 ⁻³	1.612	×10 ⁻²
	15M2A	1.65	× 10 ⁻¹	2.89>	< 10 ⁻²	1.65×10 ⁻¹	2.89×10 ⁻²	1.862	×10 ⁻¹
	20M2A	1.23	×10 ⁻¹	2.23>	< 10 ⁻²	1.23×10 ⁻¹	2.23×10 ⁻²	1.342	×10 ⁻¹
	25M2A	1.10	× 10 ⁻¹	1.98>	< 10 ⁻²	1.10×10 ⁻¹	1.98×10 ⁻²	1.142	× 10 ⁻¹
K _{AR1} :	Equivaler	nt factor in the	M _A radial dire	ction when on	: Equivalent fa	ctor in the Ma	reverse radial	direction	

Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when one LM block is used

K_{AL1}: Equivalent factor in the M_A reverse radial direction

when one LM block is used

K_{AR2}: Equivalent factor in the M_A radial direction when two

LM blocks are used in close contact with each other

when two LM blocks are used in close contact with each other

 $K_{\text{B}1}$: M_{B} Equivalent factor when one LM block is used $K_{\text{B}2}$: M_{B} Equivalent factor when two LM blocks are used in

close contact with each other K_{CR} : Equivalent factor in the M_{C} radial direction K_{CL} : Equivalent factor in the M_{C} reverse radial direction

Table4 Equivalent Factors (Models SR and NR)

No. Kast Kal Kast Kas Ka	Mac	dal Na				Equivale	ent factor			
SV(SB) 3.40×10 ⁻¹ 1.70×10 ⁻¹ 4.94×10 ⁻² 2.47×10 ⁻² 2.35×10 ⁻¹ 3.32×10 ⁻² 1.70×10 ⁻¹ 8.48×10 ⁻² 20W(IB) 1.72×10 ⁻¹ 8.61×10 ⁻² 3.24×10 ⁻² 1.62×10 ⁻² 1.21×10 ⁻¹ 2.25×10 ⁻² 1.30×10 ⁻¹ 6.49×10 ⁻² 20V(SB) 2.72×10 ⁻¹ 1.36×10 ⁻¹ 4.33×10 ⁻² 2.16×10 ⁻² 1.88×10 ⁻³ 2.94×10 ⁻² 1.30×10 ⁻¹ 6.49×10 ⁻² 25W(IB) 1.38×10 ⁻¹ 6.89×10 ⁻² 2.59×10 ⁻² 1.30×10 ⁻² 9.67×10 ⁻² 1.80×10 ⁻² 1.11×10 ⁻¹ 5.55×10 ⁻² 2.5V(SB) 2.17×10 ⁻¹ 1.09×10 ⁻¹ 3.46×10 ⁻² 1.73×10 ⁻² 1.51×10 ⁻¹ 2.35×10 ⁻² 1.11×10 ⁻¹ 5.55×10 ⁻² 30W(IB) 1.15×10 ⁻¹ 5.74×10 ⁻² 2.22×10 ⁻² 1.11×10 ⁻² 8.06×10 ⁻² 1.55×10 ⁻² 30W(IB) 1.15×10 ⁻¹ 5.74×10 ⁻² 2.99×10 ⁻² 1.49×10 ⁻² 1.37×10 ⁻² 2.02×10 ⁻² 9.22×10 ⁻² 4.61×10 ⁻² 35W(IB) 1.04×10 ⁻¹ 5.21×10 ⁻² 1.99×10 ⁻² 9.61×10 ⁻² 1.31×10 ⁻² 1.37×10 ⁻² 1.33×10 ⁻² 7.64×10 ⁻² 3.82×10 ⁻² 45W(IB) 9.12×10 ⁻² 4.56×10 ⁻² 1.69×10 ⁻² 8.47×10 ⁻³ 6.39×10 ⁻² 1.17×10 ⁻² 7.64×10 ⁻² 3.82×10 ⁻² 45W(IB) 9.12×10 ⁻² 4.56×10 ⁻² 1.69×10 ⁻² 8.47×10 ⁻³ 6.39×10 ⁻² 1.17×10 ⁻² 7.64×10 ⁻² 3.82×10 ⁻² 4.56×10 ⁻² 4.56×10 ⁻² 1.39×10 ⁻² 6.93×10 ⁻³ 4.84×10 ⁻² 9.66×10 ⁻³ 5.46×10 ⁻² 2.73×10 ⁻² 5.55×10 ⁻² 3.34×10 ⁻² 3.44×10 ⁻² 1.39×10 ⁻² 6.93×10 ⁻³ 4.84×10 ⁻² 9.66×10 ⁻³ 5.46×10 ⁻² 2.73×10 ⁻² 2.55×10 ⁻² 3.09×10 ⁻² 1.13×10 ⁻² 1.63×10 ⁻² 9.26×10 ⁻² 6.58×10 ⁻² 3.00×10 ⁻² 9.66×10 ⁻³ 6.86×10 ⁻² 1.84×10 ⁻² 1.31×10 ⁻² 7.05×10 ⁻² 1.33×10 ⁻² 9.26×10 ⁻² 6.58×10 ⁻² 3.00×10 ⁻² 9.66×10 ⁻² 6.86×10 ⁻² 1.84×10 ⁻² 1.31×10 ⁻² 7.05×10 ⁻² 1.33×10 ⁻² 6.92×10 ⁻² 4.91×10 ⁻² 4.55×10 ⁻² 4.66×10 ⁻² 1.55×10 ⁻² 4.66×10 ⁻² 4.94×10 ⁻²	IVIOC	iei No.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	К в1	K _{B2}	Kcr	KcL
SR		15W (TB)	2.09×10 ⁻¹	1.04×10 ⁻¹	3.74×10 ⁻²	1.87×10 ⁻²	1.46×10 ⁻¹	2.58×10 ⁻²	1.70×10 ⁻¹	8.48×10 ⁻²
SR RR 20V(SB) 2.72×10 ⁻¹ 1.36×10 ⁻¹ 4.33×10 ⁻² 2.16×10 ⁻² 1.88×10 ⁻¹ 2.94×10 ⁻² 1.30×10 ⁻¹ 6.49×10 ⁻² 25W(TB) 1.38×10 ⁻¹ 6.89×10 ⁻² 2.59×10 ⁻² 1.30×10 ⁻² 9.67×10 ⁻² 1.80×10 ⁻² 1.11×10 ⁻¹ 5.55×10 ⁻² 30W(TB) 1.15×10 ⁻¹ 5.74×10 ⁻² 2.22×10 ⁻² 1.11×10 ⁻² 8.06×10 ⁻² 1.55×10 ⁻² 9.22×10 ⁻² 4.61×10 ⁻² 30V(SB) 1.99×10 ⁻¹ 9.93×10 ⁻² 2.99×10 ⁻² 1.49×10 ⁻² 1.37×10 ⁻¹ 2.02×10 ⁻² 9.22×10 ⁻² 4.61×10 ⁻² 35W(TB) 1.04×10 ⁻¹ 5.21×10 ⁻² 1.92×10 ⁻² 9.61×10 ⁻² 7.31×10 ⁻² 1.33×10 ⁻² 7.64×10 ⁻² 3.82×10 ⁻² 35V(SB) 1.70×10 ⁻¹ 8.51×10 ⁻² 2.61×10 ⁻² 1.31×10 ⁻² 1.17×10 ⁻¹ 1.77×10 ⁻² 7.64×10 ⁻² 3.82×10 ⁻² 45W(TB) 9.12×10 ⁻² 4.56×10 ⁻² 1.69×10 ⁻² 8.47×10 ⁻³ 6.39×10 ⁻² 1.17×10 ⁻² 7.64×10 ⁻² 3.88×10 ⁻² 55W(TB) 6.89×10 ⁻² 3.44×10 ⁻² 1.39×10 ⁻² 6.93×10 ⁻³ 4.84×10 ⁻² 9.66×10 ⁻³ 5.46×10 ⁻² 2.73×10 ⁻² 55W(TB) 6.89×10 ⁻² 3.44×10 ⁻² 1.55×10 ⁻² 8.11×10 ⁻² 1.33×10 ⁻² 9.26×10 ⁻² 6.58×10 ⁻² 25XL 8.91×10 ⁻² 6.33×10 ⁻² 1.79×10 ⁻² 1.27×10 ⁻² 6.55×10 ⁻² 1.33×10 ⁻² 9.26×10 ⁻² 6.58×10 ⁻² 30 9.66×10 ⁻³ 6.86×10 ⁻² 1.84×10 ⁻² 1.31×10 ⁻² 7.05×10 ⁻² 1.33×10 ⁻² 9.26×10 ⁻² 6.58×10 ⁻² 30L 7.43×10 ⁻² 5.27×10 ⁻² 1.55×10 ⁻² 1.08×10 ⁻² 5.47×10 ⁻² 1.31×10 ⁻² 6.92×10 ⁻² 4.91×10 ⁻² 35L 6.67×10 ⁻² 4.74×10 ⁻² 1.35×10 ⁻² 9.61×10 ⁻³ 4.90×10 ⁻² 1.00×10 ⁻² 6.92×10 ⁻² 4.91×10 ⁻² 4.55×10 ⁻² 3.66×10 ⁻² 4.74×10 ⁻² 1.35×10 ⁻² 9.61×10 ⁻³ 4.90×10 ⁻² 1.00×10 ⁻² 6.92×10 ⁻² 4.91×10 ⁻² 4.55×10 ⁻² 3.66×10 ⁻² 4.97×10 ⁻² 3.66×10 ⁻² 3.66×1		15V (SB)	3.40×10 ⁻¹	1.70×10 ⁻¹	4.94×10 ⁻²	2.47×10 ⁻²	2.35×10 ⁻¹	3.32×10 ⁻²	1.70×10 ⁻¹	8.48×10 ⁻²
SR		20W (TB)	1.72×10 ⁻¹	8.61×10 ⁻²	3.24×10 ⁻²	1.62×10 ⁻²	1.21×10 ⁻¹	2.25×10 ⁻²	1.30×10 ⁻¹	6.49×10 ⁻²
SR		20V (SB)	2.72×10 ⁻¹	1.36×10 ⁻¹	4.33×10 ⁻²	2.16×10 ⁻²	1.88×10 ⁻¹	2.94×10 ⁻²	1.30×10 ⁻¹	6.49×10 ⁻²
SR 30W(TB) 1.15×10³ 5.74×10² 2.22×10² 1.11×10² 8.06×10² 1.55×10² 9.22×10² 4.61×10² 30V(SB) 1.99×10³ 9.93×10² 2.99×10² 1.49×10² 1.37×10³ 2.02×10² 9.22×10² 4.61×10² 35W(TB) 1.04×10³ 5.21×10² 1.92×10² 9.61×10³ 7.31×10² 1.33×10² 7.64×10² 3.82×10² 45W(TB) 9.12×10² 4.56×10² 1.69×10² 8.47×10³ 6.39×10² 1.17×10³ 7.64×10² 3.82×10² 55W(TB) 6.89×10² 3.44×10² 1.39×10² 6.93×10³ 4.84×10² 9.66×10³ 5.46×10² 2.73×10² 2.55×10² 8.11×10² 1.63×10² 9.26×10² 6.58×10² 2.55×10² 8.91×10² 6.33×10² 1.79×10² 1.55×10² 8.11×10² 1.63×10² 9.26×10² 6.58×10² 2.55×10² 3.04×10² 5.27×10² 6.58×10² 3.04×10² 5.27×10² 6.58×10² 3.04×10² 5.27×10² 6.58×10² 3.04×10² 5.27×10² 6.58×10² 3.04×10² 5.27×10² 6.58×10² 3.05×10² 6.26×10² 1.64×10² 1.16×10² 6.42×10² 1.33×10² 8.28×10² 6.92×10² 4.91×10² 3.54×10² 6.67×10² 4.74×10² 1.35×10² 9.61×10³ 4.90×10² 1.00×10² 6.92×10² 4.91×10² 4.51×10² 6.55×10² 1.33×10² 6.92×10² 4.91×10² 4.54×10² 1.11×10² 7.90×10³ 4.21×10² 8.21×10³ 4.44×10² 3.15×10² 6.55×10² 5.57×10² 3.53×10² 3.62×10² 1.08×10² 7.66×10³ 3.79×10² 8.07×10³ 5.19×10² 3.68×10² 5.55×10² 3.56×10² 2.53×10² 3.61×10³ 5.90×10³ 3.64×10² 5.61×10³ 3.75×10² 2.66×10² 6.54×10² 3.15×10² 3.56×10² 2.53×10² 7.51×10³ 5.33×10³ 3.64×10² 5.61×10³ 3.75×10² 2.66×10² 7.51×10³ 5.33×10³ 3.08×10² 5.61×10³ 3.75×10² 2.66×10² 7.51×10³ 5.33×10³ 3.08×10² 5.04×10³ 3.16×10² 2.24×10² 7.51×10² 5.09×10³ 3.08×10² 5.04×10³ 3.16×10² 2.24×10² 7.51×10² 3.05×10²		25W (TB)	1.38×10 ⁻¹	6.89×10 ⁻²	2.59×10 ⁻²	1.30×10 ⁻²	9.67×10 ⁻²	1.80×10 ⁻²	1.11×10 ⁻¹	5.55×10 ⁻²
30W(TB) 1.15×10³ 5.74×10² 2.22×10² 1.11×10² 8.06×10² 1.55×10² 9.22×10² 4.61×10² 30V(SB) 1.99×10³ 9.93×10² 2.99×10² 1.49×10² 1.37×10³ 2.02×10² 9.22×10² 4.61×10² 35W(TB) 1.04×10³ 5.21×10² 1.92×10² 9.61×10³ 7.31×10² 1.33×10² 7.64×10² 3.82×10² 45W(TB) 1.70×10³ 8.51×10² 2.61×10² 1.31×10² 1.17×10³ 1.77×10² 7.64×10² 3.82×10² 45W(TB) 9.12×10² 4.56×10² 1.69×10² 8.47×10³ 6.39×10² 1.17×10³ 5.71×10² 2.85×10² 55W(TB) 6.89×10² 3.44×10² 1.39×10² 6.93×10³ 4.84×10² 9.66×10³ 5.46×10² 2.73×10² 2.51×10² 2.51×10² 3.44×10² 1.39×10² 1.27×10² 6.55×10² 8.11×10² 1.63×10² 9.26×10² 6.58×10² 2.51×10² 3.00×10² 9.26×10² 6.58×10² 3.00×10² 9.66×10² 6.58×10² 3.00×10² 9.66×10² 6.58×10² 3.00×10² 9.26×10² 6.58×10² 3.00×10² 9.26×10² 6.58×10² 3.00×10² 9.26×10² 6.58×10² 3.00×10² 9.26×10² 6.58×10² 3.00×10² 9.26×10² 6.58×10² 3.00×10² 9.26×10² 6.58×10² 3.00×10² 9.26×10² 6.58×10² 3.00×10² 9.26×10² 6.92×10² 4.91×10² 3.60×10² 4.91×10² 4.50×10² 4.50	e D	25V (SB)	2.17×10 ⁻¹	1.09×10 ⁻¹	3.46×10 ⁻²	1.73×10 ⁻²	1.51×10 ⁻¹	2.35×10 ⁻²	1.11×10 ⁻¹	5.55×10 ⁻²
NR	SK	30W (TB)	1.15×10 ⁻¹	5.74×10 ⁻²	2.22×10 ⁻²	1.11×10 ⁻²	8.06×10 ⁻²	1.55×10 ⁻²	9.22×10 ⁻²	4.61×10 ⁻²
SSV (SB) 1.70×10 ⁻¹ 8.51×10 ⁻² 2.61×10 ⁻² 1.31×10 ⁻² 1.17×10 ⁻¹ 1.77×10 ⁻² 7.64×10 ⁻² 3.82×10 ⁻² 45W (TB) 9.12×10 ⁻² 4.56×10 ⁻² 1.69×10 ⁻² 8.47×10 ⁻³ 6.39×10 ⁻² 1.17×10 ⁻² 5.71×10 ⁻² 2.85×10 ⁻² 55W (TB) 6.89×10 ⁻² 3.44×10 ⁻² 1.39×10 ⁻² 6.93×10 ⁻³ 4.84×10 ⁻² 9.66×10 ⁻³ 5.46×10 ⁻² 2.73×10 ⁻² 25X 8.91×10 ⁻² 6.33×10 ⁻² 1.79×10 ⁻² 1.27×10 ⁻² 6.55×10 ⁻² 1.33×10 ⁻² 9.26×10 ⁻² 6.58×10 ⁻² 25X 8.91×10 ⁻² 6.33×10 ⁻² 1.79×10 ⁻² 1.27×10 ⁻² 6.55×10 ⁻² 1.33×10 ⁻² 9.26×10 ⁻² 6.58×10 ⁻² 30 9.66×10 ⁻² 6.86×10 ⁻² 1.84×10 ⁻² 1.31×10 ⁻² 7.05×10 ⁻² 1.35×10 ⁻² 8.28×10 ⁻² 5.88×10 ⁻² 30 7.43×10 ⁻² 5.27×10 ⁻² 1.52×10 ⁻² 1.08×10 ⁻² 5.47×10 ⁻² 1.13×10 ⁻² 8.28×10 ⁻² 5.88×10 ⁻² 35 8.82×10 ⁻² 6.26×10 ⁻² 1.64×10 ⁻² 1.16×10 ⁻² 6.42×10 ⁻² 1.20×10 ⁻² 6.92×10 ⁻² 4.91×10 ⁻² 35 6.67×10 ⁻² 4.74×10 ⁻² 1.35×10 ⁻² 9.61×10 ⁻³ 4.90×10 ⁻² 1.00×10 ⁻² 6.92×10 ⁻² 4.91×10 ⁻² 4.55×10 ⁻² 4.91×10 ⁻² 4.65×10 ⁻² 4.91×10 ⁻² 4.65×10 ⁻² 4.91×10 ⁻² 4.66×10 ⁻² 4.91×10 ⁻² 4.91×10 ⁻² 4.91×10 ⁻² 4.91×10 ⁻² 4.91×10 ⁻² 4.91×10 ⁻² 4.91×		30V (SB)	1.99×10 ⁻¹	9.93×10 ⁻²	2.99×10 ⁻²	1.49×10 ⁻²	1.37×10 ⁻¹	2.02×10 ⁻²	9.22×10 ⁻²	4.61×10 ⁻²
A5W (TB) 9.12×10² 4.56×10² 1.69×10² 8.47×10³ 6.39×10² 1.17×10² 5.71×10² 2.85×10²		35W (TB)	1.04×10 ⁻¹	5.21×10 ⁻²	1.92×10 ⁻²	9.61×10 ⁻³	7.31×10 ⁻²	1.33×10 ⁻²	7.64×10 ⁻²	3.82×10 ⁻²
S5W (TB) 6.89×10² 3.44×10² 1.39×10² 6.93×10³ 4.84×10² 9.66×10³ 5.46×10² 2.73×10²		35V (SB)	1.70×10 ⁻¹	8.51×10 ⁻²	2.61×10 ⁻²	1.31×10 ⁻²	1.17×10 ⁻¹	1.77×10 ⁻²	7.64×10 ⁻²	3.82×10 ⁻²
25X		45W (TB)	9.12×10 ⁻²	4.56×10 ⁻²	1.69×10 ⁻²	8.47×10 ⁻³	6.39×10 ⁻²	1.17×10 ⁻²	5.71×10 ⁻²	2.85×10 ⁻²
SEXL 8.91×10² 6.33×10² 1.79×10² 1.27×10² 6.55×10² 1.33×10² 9.26×10² 6.58×10²		55W (TB)	6.89×10 ⁻²	3.44×10 ⁻²	1.39×10 ⁻²	6.93×10 ⁻³	4.84×10 ⁻²	9.66×10 ⁻³	5.46×10 ⁻²	2.73×10 ⁻²
NR		25X	1.10×10 ⁻¹	7.78×10 ⁻²	2.19×10 ⁻²	1.55×10 ⁻²	8.11×10 ⁻²	1.63×10 ⁻²	9.26×10 ⁻²	6.58×10 ⁻²
NR		25XL	8.91×10 ⁻²	6.33×10 ⁻²	1.79×10 ⁻²	1.27×10 ⁻²	6.55×10 ⁻²	1.33×10 ⁻²	9.26×10 ⁻²	6.58×10 ⁻²
NR		30	9.66×10 ⁻²	6.86×10 ⁻²	1.84×10 ⁻²	1.31×10 ⁻²	7.05×10 ⁻²	1.35×10 ⁻²	8.28×10 ⁻²	5.88×10 ⁻²
NR		30L	7.43×10 ⁻²	5.27×10 ⁻²	1.52×10 ⁻²	1.08×10 ⁻²	5.47×10 ⁻²	1.13×10 ⁻²	8.28×10 ⁻²	5.88×10 ⁻²
NR		35	8.82×10 ⁻²	6.26×10 ⁻²	1.64×10 ⁻²	1.16×10 ⁻²	6.42×10 ⁻²	1.20×10 ⁻²	6.92×10 ⁻²	4.91×10 ⁻²
NR		35L	6.67×10 ⁻²	4.74×10 ⁻²	1.35×10 ⁻²	9.61×10 ⁻³	4.90×10 ⁻²	1.00×10 ⁻²	6.92×10 ⁻²	4.91×10 ⁻²
NR		45	6.84×10 ⁻²	4.86×10 ⁻²	1.30×10 ⁻²	9.23×10 ⁻³	5.00×10 ⁻²	9.58×10 ⁻³	5.19×10 ⁻²	3.68×10 ⁻²
SEL		45L	5.11×10 ⁻²	3.62×10 ⁻²	1.08×10 ⁻²	7.66×10 ⁻³	3.79×10 ⁻²	8.07×10 ⁻³	5.19×10 ⁻²	3.68×10 ⁻²
55L 4.53×10² 3.22×10² 9.16×10³ 6.51×10³ 3.34×10² 6.79×10³ 4.44×10² 3.15×10² 65 4.97×10² 3.53×10² 9.74×10³ 6.91×10³ 3.64×10² 7.18×10³ 3.75×10² 2.66×10² 65L 3.56×10² 2.53×10² 7.51×10³ 5.33×10³ 2.65×10² 5.61×10³ 3.75×10² 2.66×10² 75 4.21×10² 2.99×10² 8.31×10³ 5.90×10³ 3.08×10² 6.13×10³ 3.16×10² 2.24×10² 75L 3.14×10² 2.23×10² 6.74×10³ 4.78×10³ 2.33×10² 5.04×10³ 3.16×10² 2.24×10² 85 3.70×10² 2.62×10² 7.31×10³ 5.19×10³ 2.71×10² 5.40×10³ 2.80×10² 1.99×10² 85L 2.80×10² 1.99×10² 6.07×10³ 4.31×10³ 2.08×10² 4.55×10³ 2.80×10² 1.99×10² 100 3.05×10² 2.17×10² 6.20×10³ 4.41×10³ 2.26×10² 4.63×10³ 2.38×10² 1.69×10²	ND	55	5.75×10 ⁻²	4.08×10 ⁻²	1.11×10 ⁻²	7.90×10 ⁻³	4.21×10 ⁻²	8.21×10 ⁻³	4.44×10 ⁻²	3.15×10 ⁻²
65L 3.56×10 ² 2.53×10 ² 7.51×10 ³ 5.33×10 ³ 2.65×10 ² 5.61×10 ³ 3.75×10 ² 2.66×10 ² 75 4.21×10 ² 2.99×10 ² 8.31×10 ³ 5.90×10 ³ 3.08×10 ² 6.13×10 ³ 3.16×10 ² 2.24×10 ² 75L 3.14×10 ² 2.23×10 ² 6.74×10 ³ 4.78×10 ³ 2.33×10 ² 5.04×10 ³ 3.16×10 ² 2.24×10 ² 85 3.70×10 ² 2.62×10 ² 7.31×10 ³ 5.19×10 ³ 2.71×10 ² 5.40×10 ³ 2.80×10 ² 1.99×10 ² 85L 2.80×10 ² 1.99×10 ² 6.07×10 ³ 4.31×10 ³ 2.08×10 ² 4.55×10 ³ 2.80×10 ² 1.99×10 ² 100 3.05×10 ² 2.17×10 ² 6.20×10 ³ 4.41×10 ³ 2.26×10 ² 4.63×10 ³ 2.38×10 ² 1.69×10 ²	INIX	55L	4.53×10 ⁻²	3.22×10 ⁻²	9.16×10 ⁻³	6.51×10 ⁻³	3.34×10 ⁻²	6.79×10 ⁻³	4.44×10 ⁻²	3.15×10 ⁻²
75		65	4.97×10 ⁻²	3.53×10 ⁻²	9.74×10 ⁻³	6.91×10 ⁻³	3.64×10 ⁻²	7.18×10 ⁻³	3.75×10 ⁻²	2.66×10 ⁻²
75L 3.14×10 ² 2.23×10 ² 6.74×10 ³ 4.78×10 ³ 2.33×10 ² 5.04×10 ³ 3.16×10 ² 2.24×10 ² 85 3.70×10 ² 2.62×10 ² 7.31×10 ³ 5.19×10 ³ 2.71×10 ² 5.40×10 ³ 2.80×10 ² 1.99×10 ² 85L 2.80×10 ² 1.99×10 ² 6.07×10 ³ 4.31×10 ³ 2.08×10 ² 4.55×10 ³ 2.80×10 ² 1.99×10 ² 100 3.05×10 ² 2.17×10 ² 6.20×10 ³ 4.41×10 ³ 2.26×10 ² 4.63×10 ³ 2.38×10 ² 1.69×10 ²		65L	3.56×10 ⁻²	2.53×10 ⁻²	7.51×10 ⁻³	5.33×10 ⁻³	2.65×10 ⁻²	5.61×10 ⁻³	3.75×10 ⁻²	2.66×10 ⁻²
85		75	4.21×10 ⁻²	2.99×10 ⁻²	8.31×10 ⁻³	5.90×10 ⁻³	3.08×10 ⁻²	6.13×10 ⁻³	3.16×10 ⁻²	2.24×10 ⁻²
85L 2.80×10 ² 1.99×10 ² 6.07×10 ³ 4.31×10 ³ 2.08×10 ² 4.55×10 ³ 2.80×10 ² 1.99×10 ² 100 3.05×10 ² 2.17×10 ² 6.20×10 ³ 4.41×10 ³ 2.26×10 ² 4.63×10 ³ 2.38×10 ² 1.69×10 ²		75L	3.14×10 ⁻²	2.23×10 ⁻²	6.74×10 ⁻³	4.78×10 ⁻³	2.33×10 ⁻²	5.04×10 ⁻³	3.16×10 ⁻²	2.24×10 ⁻²
100 3.05×10 ² 2.17×10 ² 6.20×10 ³ 4.41×10 ³ 2.26×10 ² 4.63×10 ³ 2.38×10 ² 1.69×10 ²		85	3.70×10 ⁻²	2.62×10 ⁻²	7.31×10 ⁻³	5.19×10 ⁻³	2.71×10 ⁻²	5.40×10 ⁻³	2.80×10 ⁻²	1.99×10 ⁻²
		85L	2.80×10 ⁻²	1.99×10 ⁻²	6.07×10 ⁻³	4.31×10 ⁻³	2.08×10 ⁻²	4.55×10 ⁻³	2.80×10 ⁻²	1.99×10 ⁻²
100L 2.74×10 ² 1.95×10 ² 5.46×10 ³ 3.87×10 ³ 2.00×10 ² 4.00×10 ³ 2.38×10 ² 1.69×10 ²		100	3.05×10 ⁻²	2.17×10 ⁻²	6.20×10 ⁻³	4.41×10 ⁻³	2.26×10 ⁻²	4.63×10 ⁻³	2.38×10 ⁻²	1.69×10 ⁻²
		100L	2.74×10 ⁻²	1.95×10 ⁻²	5.46×10 ⁻³	3.87×10 ⁻³	2.00×10 ⁻²	4.00×10 ⁻³	2.38×10 ⁻²	1.69×10 ⁻²

 $K_{\mbox{\tiny AR1}}\,$: Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when one LM block is used

KAL1 : Equivalent factor in the MA reverse radial direction

when one LM block is used K_{AR2} : Equivalent factor in the M_{A} radial direction when two LM blocks are used in close contact with each other K_{AL2} : Equivalent factor in the M_{A} reverse radial direction when two LM blocks are used in close contact with each other

 $K_{\rm B1}~:M_{\rm B}$ Equivalent factor when one LM block is used $K_{\rm B2}~:M_{\rm B}$ Equivalent factor when two LM blocks are used in close contact with each other

 K_{CR} : Equivalent factor in the Mc radial direction K_{CL} : Equivalent factor in the Mc reverse radial direction

Table5 Equivalent Factors (Models NRS and HRW)

Model No.					Equival	ent factor			
		K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl
	25X	1.05×	C 10 ⁻¹	2.11>	< 10 ⁻²	1.05×10 ⁻¹	2.11×10 ⁻²	9.41>	<10⁻²
	25XL	8.60×	C 10 ⁻²	1.73×10 ⁻²		8.60×10 ⁻²	1.73×10 ⁻²	9.41>	< 10 ⁻²
	30	9.30×	(10-2	1.77×10 ⁻²		9.30×10 ⁻²	1.77×10 ⁻²	8.44>	<10 ⁻²
	30L	7.17×	(10 ⁻²	1.47>	< 10 ⁻²	7.17×10 ⁻²	1.47×10 ⁻²	8.44>	<10 ⁻²
	35	8.47×10 ⁻²		1.57>	< 10 ⁻²	8.47×10 ⁻²	1.57×10 ⁻²	7.08>	<10 ⁻²
NRS	35L	6.44×10 ⁻²		1.31>	< 10 ⁻²	6.44×10 ⁻²	1.31×10 ⁻²	7.08>	<10 ⁻²
	45	6.58×10 ⁻²		1.25>	< 10 ⁻²	6.58×10 ⁻²	1.25×10 ⁻²	5.26>	<10 ⁻²
	45L	4.92×10 ⁻²		1.04>	< 10 ⁻²	4.92×10 ⁻²	1.04×10 ⁻²	5.26>	<10 ⁻²
	55	5.54×10 ⁻²		1.07>	< 10 ⁻²	5.54×10 ⁻²	1.07×10 ⁻²	4.52×10 ⁻²	
	55L	4.38×10 ⁻²		8.85×10 ⁻³		4.38×10 ⁻²	8.85×10 ⁻³	4.52>	<10 ⁻²
	65	4.79×10 ⁻²		9.38×10 ⁻³		4.79×10 ⁻²	9.38×10 ⁻³	3.81×10 ⁻²	
	65L	3.43×10 ⁻²		7.25×10 ⁻³		3.43×10 ⁻²	7.25×10 ⁻³	3.81>	<10⁻²
	75	4.05×10 ⁻²		8.01>	<10 ⁻³	4.05×10 ⁻²	8.01×10 ⁻³	3.20>	(10 ⁻²
	75L	3.03×	(10-2	6.50>	<10 ⁻³	3.03×10 ⁻²	6.50×10 ⁻³	3.20>	<10 ⁻²
	85	3.56×	(10 ⁻²	7.05×10 ⁻³		3.56×10 ⁻²	7.05×10 ⁻³	2.83>	(10 ⁻²
	85L	2.70×	(10 ⁻²	5.87×10 ⁻³		2.70×10 ⁻²	5.87×10 ⁻³	2.83>	<10 ⁻²
	100	2.93×	(10-2	5.97>	<10 ⁻³	2.93×10 ⁻²	5.97×10 ⁻³	2.41>	< 10 ⁻²
	100L	2.65×	(10 ⁻²	5.27>	< 10 ⁻³	2.65×10 ⁻²	5.27×10 ⁻³	2.41>	(10 ⁻²
	12	2.72×	C10 ⁻¹	5.16>	< 10 ⁻²	5.47×10 ⁻¹	1.04×10 ⁻¹	1.40>	<10⁻¹
	14	2.28×	(10⁻¹	4.16>	< 10 ⁻²	4.54×10 ⁻¹	8.28×10 ⁻²	1.01>	<10⁻¹
	17	1.95×	C10 ⁻¹	3.33>	< 10 ⁻²	1.95×10 ⁻¹	3.33×10 ⁻²	6.32>	< 10 ⁻²
łRW	21	1.64×	C10 ⁻¹	2.89>	< 10 ⁻²	1.64×10 ⁻¹	2.89×10 ⁻²	5.92>	<10 ⁻²
II X V V	27	1.30×	C 10 ⁻¹	2.33>	< 10 ⁻²	1.30×10 ⁻¹	2.33×10 ⁻²	5.12>	< 10 ⁻²
	35	8.66×	10-2	1.59>	< 10 ⁻²	8.66×10 ⁻²	1.59×10 ⁻²	3.06>	<10⁻²
	50	6.50×	10-2	1.21>	< 10 ⁻²	6.50×10 ⁻²	1.21×10 ⁻²	2.35>	₹10 ⁻²
	60	5.77×	(10 ⁻²	8.24>	<10⁻³	5.77×10 ⁻²	8.24×10 ⁻³	1.77>	< 10 ⁻²

Equivalent factor LM block is used

KAL1: Equivalent factor in the MA reverse radial direction when one LM block is used

when two LM blocks are used in close contact with each other

 $\begin{array}{lll} K_{B1} &: M_B \ Equivalent factor \ when \ one \ LM \ block \ is \ used \\ K_{B2} &: M_B \ Equivalent factor \ when \ two \ LM \ blocks \ are \ used \ in \ close \ contact \ with \ each \ other \\ K_{CR} &: Equivalent \ factor \ in \ the \ M_c \ reverse \ radial \ direction \\ K_{CL} &: Equivalent \ factor \ in \ the \ M_C \ reverse \ radial \ direction \\ \end{array}$

Table6 Equivalent Factors (Model RSR)

	I.I.N.I.				Equivale	ent factor			
IVIOC	lel No.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	К в1	K _{B2}	Kcr	Kcl
	3M	9.20	×10 ⁻¹	1.27	×10⁻¹	9.20×10 ⁻¹	1.27×10 ⁻¹	6.06	×10⁻¹
	3N	6.06	×10 ⁻¹	1.01	× 10 ⁻¹	6.06×10 ⁻¹	1.01×10 ⁻¹	6.06	×10 ⁻¹
	3W	7.03	×10 ⁻¹	1.06×10 ⁻¹		7.03×10 ⁻¹	1.06×10 ⁻¹	3.17	×10 ⁻¹
	3WN	4.76	×10 ⁻¹	8.27×10 ⁻²		4.76×10 ⁻¹	8.27×10 ⁻²	3.17	×10 ⁻¹
	5M	6.67	×10 ⁻¹	9.06	× 10 ⁻²	6.67×10 ⁻¹	9.06×10 ⁻²	3.85	×10 ⁻¹
	5N/TN	5.21	×10 ⁻¹	8.00×10 ⁻²		5.21×10 ⁻¹	8.00×10 ⁻²	3.85	×10 ⁻¹
	5W/WT	4.85	×10 ⁻¹	7.28	× 10 ⁻²	4.85×10 ⁻¹	7.28×10 ⁻²	1.96	×10 ⁻¹
	5WN/WTN	3.44	×10 ⁻¹	5.93	× 10 ⁻²	3.44×10 ⁻¹	5.93×10 ⁻²	1.96	×10⁻¹
	7M	4.66×10 ⁻¹		6.57	× 10 ⁻²	4.66×10 ⁻¹	6.57×10 ⁻²	2.74	×10 ⁻¹
	7Z	4.66	4.66×10 ⁻¹		× 10 ⁻²	4.66×10 ⁻¹	6.60×10 ⁻²	2.74	×10⁻¹
	7N	2.88	×10 ⁻¹	5.01	× 10 ⁻²	2.88×10 ⁻¹	5.01×10 ⁻²	2.74	× 10 ⁻¹
	7W/WT	3.07	×10 ⁻¹	5.30	× 10 ⁻²	3.07×10 ⁻¹	5.30×10 ⁻²	1.40	×10⁻¹
	7WZ	3.30	×10 ⁻¹	5.12	× 10 ⁻²	3.30×10 ⁻¹	5.12×10 ⁻²	1.40	× 10 ⁻¹
	7WN/WTN	2.18	2.18×10 ⁻¹		4.13×10 ⁻²		4.13×10 ⁻²	1.40	×10⁻¹
	9K	3.06×10 ⁻¹		5.19	× 10 ⁻²	3.06×10 ⁻¹	5.19×10 ⁻²	2.15	×10 ⁻¹
	9Z	3.06×10 ⁻¹		5.23	× 10 ⁻²	3.06×10 ⁻¹	5.23×10 ⁻²	2.15	×10⁻¹
	9N	2.15×10 ⁻¹		4.08	× 10 ⁻²	2.15×10 ⁻¹	4.08×10 ⁻²	2.15	×10⁻¹
RSR	9WV	2.44×10 ⁻¹		4.22	× 10 ⁻²	2.44×10 ⁻¹	4.22×10 ⁻²	1.09	×10⁻¹
	9WZ	2.44	×10 ⁻¹	4.22	× 10 ⁻²	2.44×10 ⁻¹	4.22×10 ⁻²	1.09	×10 ⁻¹
	9WN	1.73	×10 ⁻¹	3.32×10 ⁻²		1.73×10 ⁻¹	4.22×10 ⁻²	1.09	×10 ⁻¹
	12V	3.52×10 ⁻¹	2.46×10 ⁻¹	5.37×10 ⁻²	3.76×10 ⁻²	2.81×10 ⁻¹	4.21×10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12Z	3.52×10 ⁻¹	2.46×10 ⁻¹	5.37×10 ⁻²	3.76×10 ⁻²	2.81×10 ⁻¹	4.21×10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12N	2.30×10 ⁻¹	1.61×10 ⁻¹	4.08×10 ⁻²	2.85×10 ⁻²	1.85×10 ⁻¹	3.25×10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12WV	2.47×10 ⁻¹	1.73×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	1.99×10 ⁻¹	3.49×10 ⁻²	1.02×10 ⁻¹	7.15×10 ⁻²
	12WZ	2.47×10 ⁻¹	1.73×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	1.99×10 ⁻¹	3.49×10 ⁻²	1.02×10 ⁻¹	7.15×10 ⁻²
	12WN	1.71×10 ⁻¹	1.20×10 ⁻¹	3.36×10 ⁻²	2.35×10 ⁻²	1.38×10 ⁻¹	2.70×10 ⁻²	1.02×10 ⁻¹	7.15×10 ⁻²
	14WV	2.10×10 ⁻¹	1.47×10 ⁻¹	3.89×10 ⁻²	2.73×10 ⁻²	1.69×10 ⁻¹	3.10×10 ⁻²	8.22×10 ⁻²	5.75×10 ⁻²
	15V	2.77×10 ⁻¹	1.94×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	2.21×10 ⁻¹	3.45×10 ⁻²	1.69×10 ⁻¹	1.18×10 ⁻¹
	15Z	2.77×10 ⁻¹	1.94×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	2.21×10 ⁻¹	3.45×10 ⁻²	1.69×10 ⁻¹	1.18×10 ⁻¹
	15N	1.70×10 ⁻¹	1.19×10 ⁻¹	3.24×10 ⁻²	2.27×10 ⁻²	1.37×10 ⁻¹	2.59×10 ⁻²	1.69×10 ⁻¹	1.18×10 ⁻¹
	15WV	1.95×10 ⁻¹	1.36×10 ⁻¹	3.52×10 ⁻²	2.46×10 ⁻²	1.56×10 ⁻¹	2.80×10 ⁻²	5.83×10 ⁻²	4.08×10 ⁻²
	15WZ	1.95×10 ⁻¹	1.36×10 ⁻¹	3.52×10 ⁻²	2.46×10 ⁻²	1.56×10 ⁻¹	2.80×10 ⁻²	5.83×10 ⁻²	4.08×10 ⁻²
	15WN	1.34×10 ⁻¹	9.41×10 ⁻²	2.68×10 ⁻²	1.88×10 ⁻²	1.09×10 ⁻¹	2.16×10 ⁻²	5.82×10 ⁻²	4.08×10 ⁻²
	20V	1.68×10 ⁻¹	1.18×10 ⁻¹	2.92×10 ⁻²	2.04×10 ⁻²	1.35×10 ⁻¹	2.32×10 ⁻²	1.30×10 ⁻¹	9.13×10 ⁻²
	20N	1.20×10 ⁻¹	8.39×10 ⁻²	2.30×10 ⁻²	1.61×10 ⁻²	9.68×10 ⁻²	1.84×10 ⁻²	1.30×10 ⁻¹	9.13×10 ⁻²
1/ .	Fauivalar	nt factor in the	M andial disa		. V	· Equivalent fa	actor in the M	roverse redie	I alian attinia

 $K_{\mbox{\tiny AR1}}\,$: Equivalent factor in the $M_{\mbox{\tiny A}}$ radial direction when one

LM block is used

KAL1: Equivalent factor in the MA reverse radial direction

when one LM block is used K_{AR2} : Equivalent factor in the M_{A} radial direction when two LM blocks are used in close contact with each other K_{AL2} : Equivalent factor in the M_{A} reverse radial direction when two LM blocks are used in close contact with each other

 $K_{\rm B1}~:M_{\rm B}$ Equivalent factor when one LM block is used $K_{\rm B2}~:M_{\rm B}$ Equivalent factor when two LM blocks are used in

close contact with each other

 K_{CR} : Equivalent factor in the Mc radial direction K_{CL} : Equivalent factor in the Mc reverse radial direction

Table7 Equivalent Factors (Models RSH, HR and GSR)

Mare	lal Nia				Equivale	ent factor			
IVIOC	lel No.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	К в1	K _{B2}	Kcr	Kcl
	7Z	4.66	× 10 ⁻¹	6.60	6.60×10 ⁻²		6.60×10 ⁻²	2.74	×10 ⁻¹
	7WZ	3.30	× 10 ⁻¹	5.12	× 10 ⁻²	3.30×10 ⁻¹	5.12×10 ⁻²	1.40	×10 ⁻¹
	9Z	3.06	× 10 ⁻¹	5.23×10 ⁻²		3.06×10 ⁻¹	5.23×10 ⁻²	2.15	×10 ⁻¹
RSH	9WZ	2.44	× 10 ⁻¹	4.22	× 10 ⁻²	2.44×10 ⁻¹	4.22×10 ⁻²	1.09	×10 ⁻¹
КЭН	12Z	3.52×10 ⁻¹	2.46×10 ⁻¹	5.37×10 ⁻²	3.76×10 ⁻²	2.81×10 ⁻¹	4.21×10 ⁻²	2.09×10 ⁻¹	1.46×10 ⁻¹
	12WZ	2.47×10 ⁻¹	1.73×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	1.99×10 ⁻¹	3.49×10 ⁻²	1.02×10 ⁻¹	7.15×10 ⁻²
	15Z	2.77×10 ⁻¹	1.94×10 ⁻¹	4.38×10 ⁻²	3.07×10 ⁻²	2.21×10 ⁻¹	3.45×10 ⁻²	1.69×10 ⁻¹	1.18×10 ⁻¹
	15WZ	1.95×10 ⁻¹	1.36×10 ⁻¹	3.52×10 ⁻²	2.46×10 ⁻²	1.56×10 ⁻¹	2.80×10 ⁻²	5.83×10 ⁻²	4.08×10 ⁻²
	918	2.65×10 ⁻¹	2.65×10 ⁻¹	_	_	2.65×10 ⁻¹	_	_	_
	1123	2.08×10 ⁻¹	2.08×10 ⁻¹	_	_	2.08×10 ⁻¹	_	_	_
	1530	1.56×10 ⁻¹	1.56×10 ⁻¹	_	_	1.56×10 ⁻¹	_	_	_
	2042	1.11×10 ⁻¹	1.11×10 ⁻¹	-	-	1.11×10 ⁻¹	-	_	-
	2042T	8.64×10 ⁻²	8.64×10 ⁻²	_	_	8.64×10 ⁻²	_	_	_
	2555	7.79×10 ⁻²	7.79×10 ⁻²	_	_	7.79×10 ⁻²	_	_	_
	2555T	6.13×10 ⁻²	6.13×10 ⁻²	_	_	6.13×10 ⁻²	_	-	_
HR	3065	6.92×10 ⁻²	6.92×10 ⁻²	_	_	6.92×10 ⁻²	_	_	_
пк	3065T	5.45×10 ⁻²	5.45×10 ⁻²	_	_	5.45×10 ⁻²	_	_	_
	3575	6.23×10 ⁻²	6.23×10 ⁻²	-	-	6.23×10 ⁻²	-	_	-
	3575T	4.90×10 ⁻²	4.90×10 ⁻²	_	_	4.90×10 ⁻²	_	_	_
	4085	5.19×10 ⁻²	5.19×10 ⁻²	_	_	5.19×10 ⁻²	_	_	_
	4085T	4.09×10 ⁻²	4.09×10 ⁻²	_	_	4.09×10 ⁻²	_	_	_
	50105	4.15×10 ⁻²	4.15×10 ⁻²	_	_	4.15×10 ⁻²	_	_	_
	50105T	3.27×10 ⁻²	3.27×10 ⁻²	_	_	3.27×10 ⁻²	_	_	_
	60125	2.88×10 ⁻²	2.88×10 ⁻²	_	_	2.88×10 ⁻²	_	_	_
	15T	1.61×10 ⁻¹	1.44×10 ⁻¹	2.88×10 ⁻²	2.59×10 ⁻²	1.68×10 ⁻¹	3.01×10 ⁻²	_	_
	15V	2.21×10 ⁻¹	1.99×10 ⁻¹	3.54×10 ⁻²	3.18×10 ⁻²	2.30×10 ⁻¹	3.68×10 ⁻²	_	_
	20T	1.28×10 ⁻¹	1.16×10 ⁻¹	2.34×10 ⁻²	2.10×10 ⁻²	1.34×10 ⁻¹	2.44×10 ⁻²	_	_
GSR	20V	1.77×10 ⁻¹	1.59×10 ⁻¹	2.87×10 ⁻²	2.58×10 ⁻²	1.84×10 ⁻¹	2.99×10 ⁻²	_	_
GOR	25T	1.07×10 ⁻¹	9.63×10 ⁻²	1.97×10 ⁻²	1.77×10 ⁻²	1.12×10 ⁻¹	2.06×10 ⁻²	-	_
	25V	1.47×10 ⁻¹	1.33×10 ⁻¹	2.42×10 ⁻²	2.18×10 ⁻²	1.53×10 ⁻¹	2.52×10 ⁻²	-	-
	30T	9.17×10 ⁻²	8.26×10 ⁻²	1.68×10 ⁻²	1.51×10 ⁻²	9.59×10 ⁻²	1.76×10 ⁻²	-	_
	35T	8.03×10 ⁻²	7.22×10 ⁻²	1.48×10 ⁻²	1.33×10 ⁻²	8.39×10 ⁻²	1.55×10 ⁻²	-	_
K _{AR1} :	Equivaler	nt factor in the	M _A radial dire	ction when on	e K _{AL2}	: Equivalent fa	ctor in the MA	reverse radia	I direction

Kari : Equivalent factor in the Ma radial direction when one LM block is used

K_{AL1} : Equivalent factor in the M_A reverse radial direction when one LM block is used
K_{AR2} : Equivalent factor in the M_A radial direction when two

LM blocks are used in close contact with each other

Kale : Equivalent factor in the Ma reverse radial direction when two LM blocks are used in close contact with

each other

 $K_{\rm B1}$: $M_{\rm B}$ Equivalent factor when one LM block is used $K_{\rm B2}$: $M_{\rm B}$ Equivalent factor when two LM blocks are used in

close contact with each other

 $\begin{array}{ll} K_{\text{CR}} & : Equivalent \ factor \ in \ the \ M_{\text{C}} \ radial \ direction \\ K_{\text{CL}} & : Equivalent \ factor \ in \ the \ M_{\text{C}} \ reverse \ radial \ direction \\ \end{array}$

Table8 Equivalent Factors (Model CSR, MX,JR, NSR and SRG)

Mad	al Na				Equival	ent factor			
Model No.		K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl
	15	1.68	×10⁻¹	2.95>	< 10 ⁻²	1.68×10 ⁻¹	2.95×10 ⁻²	1.60	<10⁻¹
	20S	1.25	×10⁻¹	2.28>	2.28×10 ⁻²		2.28×10 ⁻²	1.18	<10 ⁻¹
	20	9.83	×10 ⁻²	1.91×10 ⁻²		9.83×10 ⁻²	1.91×10 ⁻²	1.18	<10 ⁻¹
	25S	1.12	×10⁻¹	2.01>	2.01×10 ⁻²		2.01×10 ⁻²	1.00>	<10 ⁻¹
CSR	25	8.66	×10 ⁻²	1.68>	< 10 ⁻²	8.66×10 ⁻²	1.68×10 ⁻²	1.00>	<10 ⁻¹
	30S	8.93	×10 ⁻²	1.73>	< 10 ⁻²	8.93×10 ⁻²	1.73×10 ⁻²	8.31	<10 ⁻²
	30	7.02×10 ⁻²		1.43>	< 10 ⁻²	7.02×10 ⁻²	1.43×10 ⁻²	8.31	<10 ⁻²
	35	6.15	× 10 ⁻²	1.28>	<10 ⁻²	6.15×10 ⁻²	1.28×10 ⁻²	6.74	<10 ⁻²
	45	5.20	× 10 ⁻²	1.00>	< 10 ⁻²	5.20×10 ⁻²	1.00×10 ⁻²	5.22	< 10 ⁻²
141/	5	4.27×10 ⁻¹		7.01>	< 10 ⁻²	4.27×10 ⁻¹	7.01×10 ⁻²	3.85>	<10 ⁻²
MX	7W	2.18×10 ⁻¹		4.13>	< 10 ⁻¹	2.18×10 ⁻¹	4.13×10 ⁻¹	1.40>	< 10 ⁻¹
	25	1.12	× 10 ⁻¹	2.01>	<10 ⁻²	1.12×10 ⁻¹	2.01×10 ⁻²	1.00>	<10 ⁻¹
	35	7.81	× 10 ⁻²	1.55>	< 10 ⁻²	7.81×10 ⁻²	1.55×10 ⁻²	6.74	<10 ⁻²
JR	45	6.71	× 10 ⁻²	1.21>	< 10 ⁻²	6.71×10 ⁻²	1.21×10 ⁻²	5.22	<10 ⁻²
	55	5.59	× 10 ⁻²	1.03×10 ⁻²		5.59×10 ⁻²	1.03×10 ⁻²	4.27	<10 ⁻²
	20TBC	2.29	× 10 ⁻¹	2.68×10 ⁻²		2.29×10 ⁻¹	2.68×10 ⁻²	_	_
	25TBC	2.01×10-1		2.27>	< 10 ⁻²	2.01×10 ⁻¹	2.27×10 ⁻²	_	_
NOD	30TBC	1.85×10 ⁻¹		1.93>	< 10 ⁻²	1.85×10 ⁻¹	1.93×10 ⁻²	_	_
NSR	40TBC	1.39×10-1		1.60>	< 10 ⁻²	1.39×10 ⁻¹	1.60×10 ⁻²	_	_
	50TBC	1.24	×10 ⁻¹	1.42>	< 10 ⁻²	1.24×10 ⁻¹	1.42×10 ⁻²	_	_
	70TBC	9.99	× 10 ⁻²	1.15×10 ⁻²		9.99×10 ⁻²	1.15×10 ⁻²	_	_
	15	1.23	× 10 ⁻¹	2.07×10 ⁻²		1.23×10 ⁻¹	2.07×10 ⁻²	1.04	<10 ⁻¹
	20	9.60	× 10 ⁻²	1.71>	< 10 ⁻²	9.60×10 ⁻²	1.71×10 ⁻²	8.00>	< 10 ⁻²
	20L	7.21	× 10 ⁻²	1.42>	<10 ⁻²	7.21×10 ⁻²	1.42×10 ⁻²	8.00>	<10 ⁻²
	25	8.96	× 10 ⁻²	1.55>	< 10 ⁻²	8.96×10 ⁻²	1.55×10 ⁻²	7.23	<10 ⁻²
	25L	6.99	×10 ⁻²	1.31>	< 10 ⁻²	6.99×10 ⁻²	1.31×10 ⁻²	7.23	<10 ⁻²
	30	8.06	× 10 ⁻²	1.33>	< 10 ⁻²	8.06×10 ⁻²	1.33×10 ⁻²	5.61	<10 ⁻²
	30L	6.12	× 10 ⁻²	1.11>	< 10 ⁻²	6.12×10 ⁻²	1.11×10 ⁻²	5.61	<10 ⁻²
000	35	7.14	× 10 ⁻²	1.18>	< 10 ⁻²	7.14×10 ⁻²	1.18×10 ⁻²	4.98	< 10 ⁻²
SRG	35L	5.26	× 10 ⁻²	9.67>	<10 ⁻³	5.26×10 ⁻²	9.67×10 ⁻³	4.98	<10 ⁻²
	45	5.49	× 10 ⁻²	9.58>	<10 ⁻³	5.49×10 ⁻²	9.58×10 ⁻³	3.85>	< 10 ⁻²
	45L	4.18	× 10-2	7.93>	<10 ⁻³	4.18×10 ⁻²	7.93×10 ⁻³	3.85	<10 ⁻²
	55	4.56	× 10-2	8.04>	< 10 ⁻³	4.56×10 ⁻²	8.04×10 ⁻³	3.25	< 10 ⁻²
	55L	3.37	× 10-2	6.42>	<10 ⁻³	3.37×10 ⁻²	6.42×10 ⁻³	3.25	<10 ⁻²
	65L	2.63	× 10 ⁻²	4.97>	< 10 ⁻³	2.63×10 ⁻²	4.97×10 ⁻³	2.70	< 10 ⁻²
	85LC	2.19	× 10 ⁻²	4.15>	<10 ⁻³	2.19×10 ⁻²	4.15×10 ⁻³	1.91	<10 ⁻²
	100LC	1.95	× 10 ⁻²	3.67>	< 10 ⁻³	1.95×10 ⁻²	3.67×10 ⁻³	1.62	<10 ⁻²

 $K_{\text{AR1}}\,$: Equivalent factor in the M_{A} radial direction when one LM block is used

K_{AL1}: Equivalent factor in the M_A reverse radial direction when one LM block is used
K_{AR2}: Equivalent factor in the M_A radial direction when two

LM blocks are used in close contact with each other

KAL2 : Equivalent factor in the MA reverse radial direction when two LM blocks are used in close contact with each other

 $K_{\tt B1}$: $M_{\tt B}$ Equivalent factor when one LM block is used $K_{\tt B2}$: $M_{\tt B}$ Equivalent factor when two LM blocks are used in

close contact with each other

 $\begin{array}{ll} K_{\text{CR}} & : Equivalent \ factor \ in \ the \ M_{\text{C}} \ radial \ direction \\ K_{\text{CL}} & : Equivalent \ factor \ in \ the \ M_{\text{C}} \ reverse \ radial \ direction \end{array}$

Table9 Equivalent Factors (Models SRN and SRW)

Mod	lel No.		Equivalent factor									
IVIOC	iei ivo.	K _{AR1}	K _{AL1}	K _{AR2}	K _{AL2}	K _{B1}	K _{B2}	Kcr	Kcl			
	35	7.14×	10-2	1.18	× 10 ⁻²	7.14×10 ⁻²	1.18×10 ⁻²	4.98×	(10 ⁻²			
	35L	5.26×10 ⁻²		9.67×10 ⁻³		5.26×10 ⁻²	9.67×10 ⁻³	4.98×	(10 ⁻²			
	45	5.49×10 ⁻²		9.58×10 ⁻³		5.49×10 ⁻²	9.58×10 ⁻³	3.85×	(10 ⁻²			
SRN	45L	4.18×10 ⁻²		7.93	7.93×10 ⁻³		7.93×10 ⁻³	3.85×10 ⁻²				
	55	4.56×	10-2	8.04	× 10 ⁻³	4.56×10 ⁻²	8.04×10 ⁻³	3.25×	(10 ⁻²			
	55L	3.37×10 ⁻²		6.42×10 ⁻³		3.37×10 ⁻²	6.42×10 ⁻³	3.25×	(10 ⁻²			
	65L	2.63×10 ⁻²		4.97×10 ⁻³		2.63×10 ⁻²	4.97×10 ⁻³	2.70×	(10 ⁻²			
	70	4.18×10 ⁻²		7.93×10 ⁻³		4.18×10 ⁻²	7.93×10 ⁻³	2.52×	(10 ⁻²			
	85	3.37×	10-2	6.42	6.42×10 ⁻³		6.42×10 ⁻³	2.09×	(10 ⁻²			
SRW	100	2.63×	10-2	4.97	4.97×10 ⁻³		4.97×10 ⁻³	1.77×	(10 ⁻²			
	130	2.19×	10-2	4.15	4.15×10 ⁻³		4.15×10 ⁻³	1.33×	(10-2			
	150	1.95×	10-2	3.67	×10 ⁻³	1.95×10 ⁻²	3.67×10 ⁻³	1.15×	(10 ⁻²			

K_{AR1}: Equivalent factor in the M_A radial direction when one LM block is used K_{AL1}: Equivalent factor in the M_A reverse radial direction

when one LM block is used

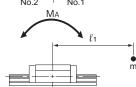
KAR2 : Equivalent factor in the MA radial direction when two LM blocks are used in close contact with each other KAL2 : Equivalent factor in the MA reverse radial direction when two LM blocks are used in close contact with

each other

 K_{B1} : M_{B} Equivalent factor when one LM block is used K_{B2} : M_{B} Equivalent factor when two LM blocks are used in

close contact with each other

Kca: Equivalent factor in the Mc radial direction


Kc.: Equivalent factor in the Mc reverse radial direction

[Example of calculation]

When one LM block is used

Model No.: SSR20XV1

No.3 No 4 Gravitational acceleration g=9.8 (m/s2) Mass m=10 (kg) l₁=200 (mm) ℓ2=100 (mm) No.2 No.1

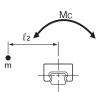
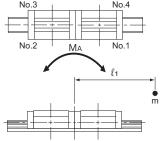


Fig.6 When One LM Block is Used

No.1 $P_1=mg+K_{AR1}\cdot mg\cdot \ell_1+K_{CR}\cdot mg\cdot \ell_2=98+0.275\times 98\times 200+0.129\times 98\times 100=6752$ (N)

No.2 $P_2 = mg - K_{AL1} \cdot mg \cdot \ell_1 + K_{CR} \cdot mg \cdot \ell_2 = 98 - 0.137 \times 98 \times 200 + 0.129 \times 98 \times 100 = -1323$ (N)

No.3 $P_3 = mg - K_{AL1} \cdot mg \cdot \ell_1 - K_{CL} \cdot mg \cdot \ell_2 = 98 - 0.137 \times 98 \times 200 - 0.0644 \times 98 \times 100 = -3218$ (N) No.4 $P_4 = mg + K_{AR1} \cdot mg \cdot \ell_1 - K_{CL} \cdot mg \cdot \ell_2 = 98 + 0.275 \times 98 \times 200 - 0.0644 \times 98 \times 100 = 4857$ (N)


When two LM blocks are used in close contact with each other

Model No.: SNS30R2

Gravitational acceleration g=9.8 (m/s²)

Mass m=5 (kg)

 $\ell_1 = 200 \text{ (mm)}$ $\ell_2 = 150 \text{ (mm)}$

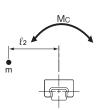


Fig.7 When Two LM Blocks are Used in Close Contact with Each Other

No.1 P₁=
$$\frac{mg}{2}$$
 +KaR2·mg· ℓ_1 +KcR· $\frac{mg\cdot\ell_2}{2}$ = $\frac{49}{2}$ +0.018×49×200+0.0842× $\frac{49\times150}{2}$ =510.3 (N)

No.2 P₂=
$$\frac{\text{mg}}{2}$$
 -Kal2·mg· ℓ_1 +KcR· $\frac{\text{mg}\cdot\ell_2}{2}$ = $\frac{49}{2}$ -0.0151×49×200+0.0842× $\frac{49\times150}{2}$ =186 (N)

No.3 P₃=
$$\frac{mg}{2}$$
 -Kal2*mg* ℓ_1 -KcL* $\frac{mg*\ell_2}{2}$ = $\frac{49}{2}$ -0.0151×49×200-0.0707× $\frac{49\times150}{2}$ =-383.3 (N)

No.4 P₄=
$$\frac{\text{mg}}{2}$$
 +Kar₂·mg· ℓ_1 -KcL· $\frac{\text{mg}\cdot\ell_2}{2}$ = $\frac{49}{2}$ +0.018×49×200-0.0707× $\frac{49\times150}{2}$ =-58.9 (N)

Note1) Since an LM Guide used in vertical installation receives only a moment load, there is no need to apply a load force

Note2) In some models, load ratings differ depending on the direction of the applied load. With such a model, calculate an equivalent load in the direction of the smallest load rating.

[Double-axis Use]

Setting Conditions

Set the conditions needed to calculate the LM system's applied load and service life in hours.

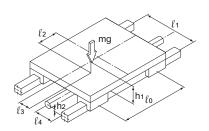
The conditions consist of the following items.

- (1) Mass: m (kg)
- (2) Direction of the working load
- (3) Position of the working point (e.g., center of gravity): ℓ_2 , ℓ_3 , h_1 (mm)
- (4) Thrust position: ℓ_4 , $h_2(mm)$
- (5) LM system arrangement: ℓ_0 , ℓ_1 (mm) (No. of units and axes)
- (6) Velocity diagram

Speed: V (mm/s)

Time constant: tn (s)

Acceleration: $\alpha_n(mm/s^2)$


$$(\alpha_n = \frac{V}{t_n})$$

(7) Duty cycle

Number of reciprocations per minute: N₁(min⁻¹)

- (8) Stroke length: \(\ell_s \)(mm)
- (9) Average speed: V_m(m/s)
- (10) Required service life in hours: L_h(h)

Gravitational acceleration g=9.8 (m/s2)

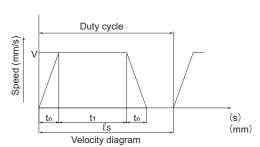


Fig.8 Condition

Applied Load Equation

The load applied to the LM Guide varies with the external force, such as the position of the gravity center of an object, thrust position, inertia generated from acceleration/deceleration during start or stop, and cutting force.

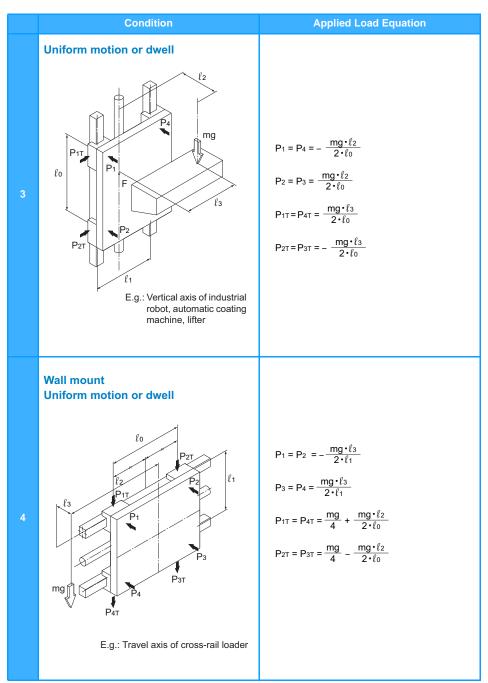
In selecting an LM Guide, it is necessary to obtain the value of the applied load while taking into account these conditions.

(m/s²)

Calculate the load applied to the LM Guide in each of the examples 1 to 10 shown below.

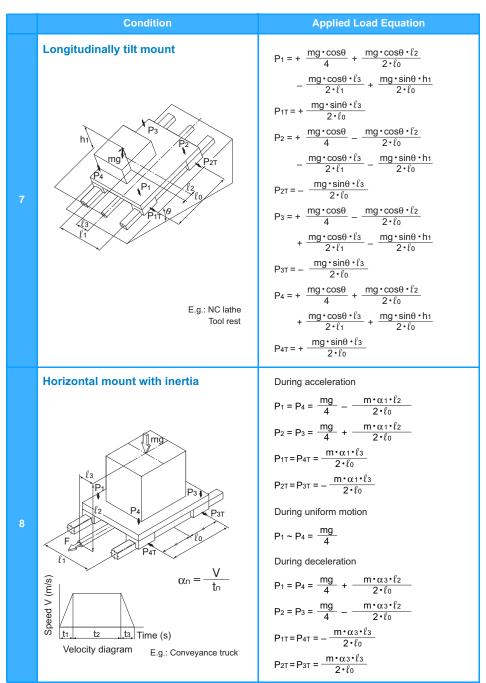
Julaic	the load applied to the Livi odide in each of the ext	ampics i to i
m	: Mass	(kg)
ℓ_n	: Distance	(mm)
F_n	: External force	(N)
P_n	: Applied load (radial/reverse radial direction)	(N)
P_{nT}	: Applied load (lateral directions)	(N)
g	: Gravitational acceleration	(m/s²)
	$(g = 9.8 \text{m/s}^2)$	
V	: Speed	(m/s)
\mathbf{t}_{n}	: Time constant	(s)

$$(\alpha_n = \frac{V}{t_n})$$


: Acceleration

[Example]

 α_{n}


	Condition	Applied Load Equation
1	Horizontal mount (with the block traveling) Uniform motion or dwell	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$
2	Horizontal mount, overhung (with the block traveling) Uniform motion or dwell P1 P2 P2 P3 P4 P2 P3 P4 P2 P3 P4 P2 P4 P2 P3 P4 P4 P2 P4 P5 P6 P6 P8 P8 P8 P8 P8 P8 P8 P8	$P_{1} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{2} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} + \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{3} = \frac{mg}{4} - \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$ $P_{4} = \frac{mg}{4} + \frac{mg \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{mg \cdot \ell_{3}}{2 \cdot \ell_{1}}$

Note) Load is positive in the direction of the arrow.

	Calculating the Applied Loa				
	Condition	Applied Load Equation			
5	With the LM rails movable Horizontal mount E.g.: XY table sliding fork	P1 to P4 (max) = $\frac{mg}{4} + \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$ P1 to P4 (min) = $\frac{mg}{4} - \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$			
6	E.g.: NC lathe Carriage	$P_{1} = + \frac{mg \cdot cos\theta}{4} + \frac{mg \cdot cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $- \frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{1T} = \frac{mg \cdot sin\theta}{4} + \frac{mg \cdot sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{2} = + \frac{mg \cdot cos\theta}{4} - \frac{mg \cdot cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $- \frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{mg \cdot sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{2T} = \frac{mg \cdot sin\theta}{4} - \frac{mg \cdot sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{3} = + \frac{mg \cdot cos\theta}{4} - \frac{mg \cdot cos\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $+ \frac{mg \cdot cos\theta \cdot \ell_{3}}{2 \cdot \ell_{1}} - \frac{mg \cdot sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{3T} = \frac{mg \cdot sin\theta}{4} - \frac{mg \cdot sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$ $P_{4} = + \frac{mg \cdot cos\theta}{4} \cdot \frac{\ell_{3}}{2 \cdot \ell_{1}} - \frac{mg \cdot sin\theta \cdot h_{1}}{2 \cdot \ell_{1}}$ $P_{4T} = \frac{mg \cdot sin\theta}{4} + \frac{mg \cdot sin\theta \cdot \ell_{2}}{2 \cdot \ell_{0}}$			

Note) Load is positive in the direction of the arrow.

Condition **Applied Load Equation** Vertical mount **During acceleration** $P_1 = P_4 = -\frac{m(g+\alpha_1)\ell_2}{2}$ with inertia $P_2 = P_3 = \frac{m(g+\alpha_1)\ell_2}{2}$ mg $P_{1T} = P_{4T} = \frac{m(g + \alpha_1)\ell_3}{2}$ $P_{2T} = P_{3T} = -\frac{m(g+\alpha_1)\ell_3}{2}$ lo During uniform motion $P_1 = P_4 = -\frac{mg \cdot \ell_2}{2 \cdot \ell_0}$ $\alpha_n = \frac{V}{t_n}$ 9 tɜ Time (s) **During deceleration** $P_1 = P_4 = -\frac{m(g - \alpha_3)\ell_2}{2 \cdot \ell_0}$ Velocity diagram E.g.: Conveyance lift $P_{2T} = P_{3T} = -\frac{m(g - \alpha_3)\ell_3}{2^{-\beta}}$ Under force F1 Horizontal mount with external force $P_1 = P_4 = -\frac{F_1 \cdot \ell_5}{2 \cdot \ell_0}$ $P_2 = P_3 = \frac{F_1 \cdot \ell_5}{2 \cdot \ell_0}$ $P_{1T} = P_{4T} = \frac{F_1 \cdot \ell_1}{2 \cdot \ell_0}$ Under force F2 $P_1 = P_4 = \frac{F_2}{4} + \frac{F_2 \cdot \ell_2}{2 \cdot \ell_0}$ 10 $P_2 = P_3 = \frac{F_2}{4} - \frac{F_2 \cdot \ell_2}{2 \cdot \ell_0}$ Under force F₃ $P_1 = P_2 = \frac{F_3 \cdot \ell_3}{2 \cdot \ell_1}$ E.g.: Drill unit, Milling machine, Machining center and other cutting machine $P_{2T} = P_{3T} = -\frac{F_3}{4} + \frac{F_3 \cdot \ell_2}{2 \cdot \ell_0}$

Note) Load is positive in the direction of the arrow.

Calculating the Equivalent Load

The LM Guide can bear loads and moments in all directions, including a radial load (P_R), reverse radial load (P_L) and lateral loads (P_T), simultaneously.

Applied loads include the following.

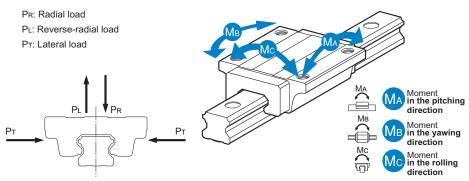


Fig.9 Directions of the Loads Applied on the LM Guide

[Equivalent Load P_E]

When two or more loads (e.g., radial load and lateral load) are simultaneously applied to the LM Guide, the service life and the static safety factor are calculated using equivalent load values obtained by converting all the loads into radial, lateral and other loads.

[Equivalent Load Equation]

The equivalent load equation for the LM Guide differs by model. For details, see the section corresponding to the subject model.

Example of equation for LM Guide model HSR

The equivalent load when a radial load (P_R) and a lateral load (P_T) are applied simultaneously is obtained using the following equation.

PE(equivalent load)=PR+PT

Pr: Radial load
Pr: Lateral load

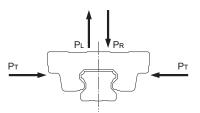


Fig.10 Equivalent of Load of the LM Guide

A 1-70

Calculating the Static Safety Factor

To calculate a load applied to the LM Guide, the average load required for calculating the service life and the maximum load needed for calculating the static safety factor must be obtained first. In a system subject to frequent starts and stops, placed under cutting forces or under a large moment caused by an overhang load, an excessively large load may apply to the LM Guide. When selecting a model number, make sure that the desired model is capable of receiving the required maximum load (whether stationary or in motion). Table10 shows reference values for the static safety factor.

Table10 Reference Values for the Static Safety Factor (fs)

Machine using the LM Guide	Load conditions	Lower limit of fs
General industrial machinery	Without vibration or impact	1.0 to 3.5
General industrial machinery	With vibration or impact	2.0 to 5.0
Machine tool	Without vibration or impact	1.0 to 4.0
Wacrime tool	With vibration or impact	2.5 to 7.0

When the radial load is large	$\frac{f_{H} \cdot f_{T} \cdot f_{C} \cdot C_{0}}{P_{R}} \geqq fs$
When the reverse radial load is large	fh•fr•fc•CoL PL ≧fs
When the lateral loads are large	fн•fτ•fc•Coτ Pτ ≧fs

fs : Static safety factor

C₀ : Basic static load rating (N)

(radial direction)

C_{0L}: Basic static load rating (N)

(reverse-radial direction)

C_{ot} : Basic static load rating (N)

(lateral direction)

P_R : Calculated load (radial direction) (N)

P_L : Calculated load (N)

(reverse-radial direction)

P_T : Calculated load (lateral direction) (N)

f_H: Hardness factor (see Fig.11 on **\(\Delta\)**1-77)

f_⊤ : Temperature factor (see Fig.12 on 🖪 1-77)

fc : Contact factor (see Table11 on 🖪 1-77)

Calculating the Average Load

In cases where the load applied to each LM block fluctuates under different conditions, such as an industrial robot holding a work with its arm as it advances and receding with its arm empty, and a machine tool handling various workpieces, it is necessary to calculate the service life of the LM Block while taking into account such fluctuating loading conditions.

The average load (P_m) is the load under which the service life of the LM Guide is equivalent to that under varying loads applied to the LM blocks.

$$\mathbf{P}_{m} = \sqrt[i]{\frac{1}{L} \cdot \sum_{n=1}^{n} (\mathbf{P}_{n}^{i} \cdot \mathbf{L}_{n})}$$

P_m : Average load (N)

P_n: Varying load (N)

L : Total travel distance (mm)
L : Distance traveled under load P (mm)

: Constant determined by rolling element

Note) The above equation or the equation (1) below applies when the rolling elements are balls.

(1) When the load fluctuates stepwise

LM Guide Using Balls (i = 3)

$$P_{m} = \sqrt[3]{\frac{1}{1} (P_{1}^{3} \cdot L_{1} + P_{2}^{3} \cdot L_{2} \cdots + P_{n}^{3} \cdot L_{n})}$$
(1)

P_m : Average load (N)

 P_n : Varying load (N)

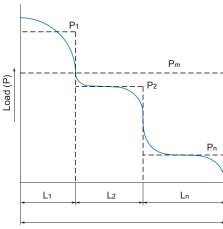
L : Total travel distance (mm)

L_n : Distance traveled under P_n (mm)

LM Guide Using Rollers ($i = \frac{10}{3}$)

$$\mathbf{P}_{m} = \sqrt[\frac{10}{3}]{\frac{1}{1} \left(\mathbf{P}_{1}^{\frac{10}{3}} \cdot \mathbf{L}_{1} + \mathbf{P}_{2}^{\frac{10}{3}} \cdot \mathbf{L}_{2} + \mathbf{P}_{n}^{\frac{10}{3}} \cdot \mathbf{L}_{n} \right)} \quad \dots \dots \dots \dots (2$$

P_m : Average Load (N)

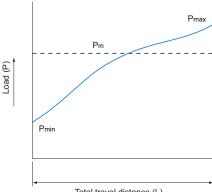

 P_n : Varying load (N)

L : Total travel distance (mm)

L

: Distance traveled under P

(mm)

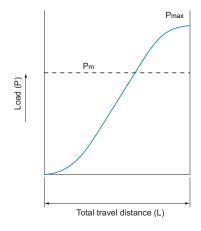

Total travel distance (L)

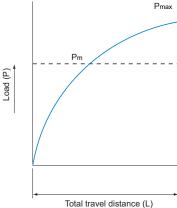
(2) When the load fluctuates monotonically

 $P_m \doteq \frac{1}{3} (P_{min} + 2 \cdot P_{max}) \cdots (3)$

P_{min}: Minimum load

- (N)
- P_{max}: Maximum load
- (N)

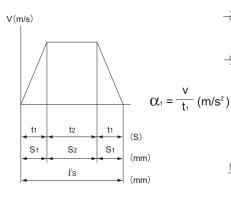


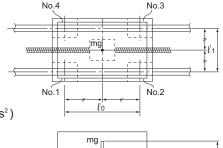

Total travel distance (L)

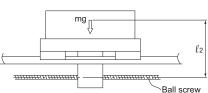
(3) When the load fluctuates sinusoidally

(a)
$$P_m = 0.65P_{max} \cdots (4)$$

(b)
$$P_m = 0.75 P_{max} \cdots (5)$$






Example of Calculating the Average Load (1) - with Horizontal Mount

and Acceleration/Deceleration Considered

[Conditions]

[Load Applied to the LM Block]

During uniform motion

$$P_1 = + \frac{mg}{4}$$

$$P_2 = + \frac{mg}{4}$$

$$P_3 = + \frac{mg}{4}$$

$$P_4 = + \frac{mg}{4}$$

During acceleration

$$Pa_1 = P_1 + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_2}$$

$$Pa_2 = P_2 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_2}$$

$$Pa_3 = P_3 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

$$Pa_3 = P_3 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

$$Pa_4 = P_4 + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

During deceleration

$$Pd_1 = P_1 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

$$Pd_2 = P_2 + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

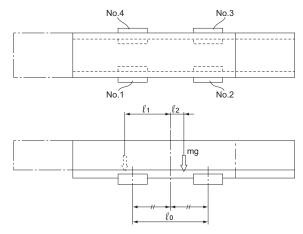
$$Pd_3 = P_3 + \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

$$Pd_4 = P_4 - \frac{m \cdot \alpha_1 \cdot \ell_2}{2 \cdot \ell_0}$$

[Average load]

$$P_{m_1} = \sqrt[3]{\frac{1}{\ell_S}} \; \left(P{a_1}^3 \! \cdot \! s_1 + P_1{}^3 \! \cdot \! s_2 + P{d_1}^3 \! \cdot \! s_3\right)$$

$$P_{m_2} = \sqrt[3]{\frac{1}{\ell_s} (Pa_2^3 \cdot s_1 + P_2^3 \cdot s_2 + Pd_2^3 \cdot s_3)}$$


$$P_{m_3} = \sqrt[3]{\frac{1}{\ell_s} \left(Pa_3^3 \cdot s_1 + P_3^3 \cdot s_2 + Pd_3^3 \cdot s_3 \right)}$$

$$P_{m4} = \sqrt[3]{\frac{1}{\ell_s} \left(Pa_4^3 \cdot s_1 + P_4^3 \cdot s_2 + Pd_4^3 \cdot s_3 \right)}$$

Note) Pan and Pdn represent loads applied to each LM block. The suffix "n" indicates the block number in the diagram above.

Example of Calculating the Average Load (2) - When the Rails are Movable

[Conditions]

[Load Applied to the LM Block]

•At the left of the arm

$$P_{\ell 1} = + \frac{mg}{4} + \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$$

$$P_{\ell 2} = + \frac{mg}{4} - \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$$

$$P_{l3} = + \frac{mg}{4} - \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$$

$$P_{\ell 4} = + \frac{mg}{4} + \frac{mg \cdot \ell_1}{2 \cdot \ell_0}$$

•At the right of the arm

$$P_{r1} = + \frac{mg}{4} - \frac{mg \cdot \ell_2}{2 \cdot \ell_1}$$

$$P_{r_2} = + \frac{mg}{4} + \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$$

$$P_{r_3} = + \frac{mg}{4} + \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$$

$$P_{r4} = + \frac{mg}{4} - \frac{mg \cdot \ell_2}{2 \cdot \ell_0}$$

[Average load]

$$P_{m1} = \frac{1}{3} (2 \cdot |P_{\ell 1}| + |P_{r1}|)$$

$$P_{m_2} = \frac{1}{3} (2 \cdot |P_{\ell_2}| + |P_{r_2}|)$$

$$P_{m3} = \frac{1}{3} (2 \cdot |P_{\ell 3}| + |P_{r3}|)$$

$$P_{m4} = \frac{1}{3} (2 \cdot |P_{\ell 4}| + |P_{r4}|)$$

Note) $P_{\ell n}$ and P_m represent loads applied to each LM block. The suffix "n" indicates the block number in the diagram above.

Calculating the Nominal Life

The service life of an LM Guide is subject to variations even under the same operational conditions. Therefore, it is necessary to use the nominal life defined below as a reference value for obtaining the service life of the LM Guide. The nominal life means the total travel distance that 90% of a group of units of the same LM Guide model can achieve without flaking (scale-like pieces on the metal surface) after individually running under the same conditions.

Nominal Life Equation for an LM Guide Using Balls

```
L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{C}}{f_{W}} \cdot \frac{C}{P_{C}}\right)^{3} \times 50
L
      : Nominal life
                                                     (km)
C
      : Basic dynamic load rating
                                                      (N)
P_{c}
      : Calculated load
                                                      (N)
                               (see Fig.11 on A1-77)
      : Hardness factor
      : Temperature factor
                               (see Fig.12 on A1-77)
fc
      : Contact factor
                             (see Table11 on A1-77)
      · Load factor
                             (see Table12 on A1-78)
fw
```

Rated Life Equation for an LM Guide Using Rollers

$$L = \left(\frac{f_H \cdot f_T \cdot f_C}{f_W} \cdot \frac{C}{P_C}\right)^{\frac{10}{3}} \times 100$$

L : Nominal life (km)
C : Basic dynamic load rating (N)
Pc : Calculated load (N)
f_H : Hardness factor (see Fig.11 on 🔼 1-77)

f_⊤ : Temperature factor

(see Fig.12 on **A**1-77)

fc : Contact factor (see Table11 on 🖾 1-77) fw : Load factor (see Table12 on 🖾 1-78)

Once the nominal life (L) has been obtained, the service life time can be obtained using the following equation if the stroke length and the number reciprocations are constant.

$$L_h = \frac{L \times 10^6}{2 \times \ell_s \times n_1 \times 60}$$

 $\begin{array}{lll} L_{\text{h}} & : Service \ \text{life time} & (h) \\ \ell_{\text{s}} & : Stroke \ \text{length} & (mm) \\ n_{\text{1}} & : Number \ \text{of reciprocations per minute} \\ & & (min^{\text{-}1}) \end{array}$

[fh: Hardness Factor]

To ensure the achievement of the optimum load capacity of the LM Guide, the raceway hardness must be between 58 and 64 HRC.

If the hardness is lower than this range, the basic dynamic load rating and the basic static load rating decrease. Therefore, it is necessary to multiply each rating by the respective hardness factor (f_H).

Since the LM Guide has sufficient hardness, the $f_{\mbox{\tiny H}}$ value for the LM Guide is normally 1.0 unless otherwise specified.

[f_T:Temperature Factor]

If the temperature of the environment surrounding the operating LM Guide exceeds 100° C, take into account the adverse effect of the high temperature and multiply the basic load ratings by the temperature factor indicated in Fig.12.

In addition, the selected LM Guide must also be of a high temperature type.

Note) LM guides not designed to withstand high temperatures should be used at 80°C or less.

Please contact THK if application requirements exceed 80°C.

[fc: Contact Factor]

When multiple LM blocks are used in close contact with each other, it is difficult to achieve uniform load distribution due to moment loads and mounting-surface accuracy. When using multiple blocks in close contact with each other, multiply the basic load rating (C or C₀) by the corresponding contact factor indicated in Table11.

Note) If uneven load distribution is expected in a large machine, take into account the respective contact factor indicated in Table11.

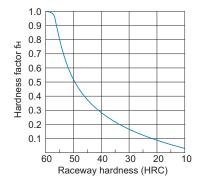


Fig.11 Hardness Factor (fH)

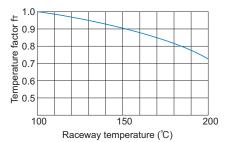


Fig.12 Temperature Factor (f_T)

Table11 Contact Factor (fc)

Number of blocks used in close contact	Contact factor fc
2	0.81
3	0.72
4	0.66
5	0.61
6 or greater	0.6
Normal use	1

[fw: Load Factor]

In general, reciprocating machines tend to involve vibrations or impact during operation. It is extremely difficult to accurately determine vibrations generated during high-speed operation and impact during frequent start and stop. Therefore, where the effects of speed and vibration are estimated to be significant, divide the basic dynamic load rating (C) by a load factor selected from Table12, which contains empirically obtained data.

Table12 Load Factor (fw)

Vibrations/ impact	Speed(V)	fw
Faint	Very low V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Medium	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	High V>2m/s	2 to 3.5

Example of Calculating the Nominal Life (1) - with Horizontal Mount and High-speed Acceleration

[Conditions]

Stroke

Model No. : HSR35LA2SS+2500LP-II

(basic dynamic load rating: C =50.2 kN) (basic static load rating: C₀=81.5 kN)

Mass : m_1 =800 kg Distance : ℓ_0 =600 mm

m₂ =500 kg ℓ₁=400 mm

 $t_2 = 2.8 \text{ s}$ $\ell_4 = 200 \text{ mm}$ $t_3 = 0.15 \text{ s}$ $\ell_5 = 350 \text{ mm}$

Acceleration : $\alpha_1 = 10 \text{ m/s}^2$

 α_3 =3.333 m/s² : ℓ_s =1450 mm

Gravitational acceleration g=9.8 (m/s²)

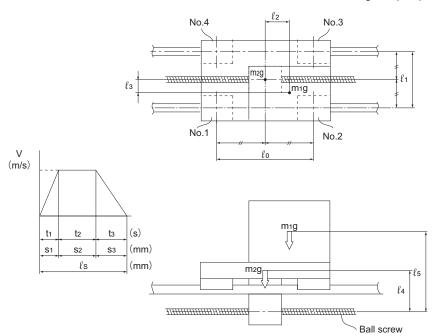


Fig.13 Condition

[Load Applied to the LM Block]

Calculate the load applied to each LM block.

• During uniform motion

■Applied load in the radial direction Pn

$$P_1 = + \frac{m_1 g}{4} - \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} + \frac{m_1 g \cdot \ell_3}{2 \cdot \ell_1} + \frac{m_2 g}{4} = +2891N$$

$$P_2 = + \frac{m_1 g}{4} + \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} + \frac{m_1 g \cdot \ell_3}{2 \cdot \ell_1} + \frac{m_2 g}{4} = +4459 \, N$$

$$P_{3} \quad = + \; \frac{m_{1}g}{4} + \frac{m_{1}g \cdot \ell_{2}}{2 \cdot \ell_{0}} - \frac{m_{1}g \cdot \ell_{3}}{2 \cdot \ell_{1}} + \frac{m_{2}g}{4} = +3479 \, N$$

$$P_4 = + \frac{m_1 g}{4} - \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} - \frac{m_1 g \cdot \ell_3}{2 \cdot \ell_1} + \frac{m_2 g}{4} = +1911 N$$

During leftward acceleration

■Applied load in the radial direction Plan

$$P\ell a_1 = P_1 - \frac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} - \frac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} = -275.6 \text{ N}$$

$$P \ell a_2 = P_2 + \frac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} + \frac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} = +7625.6 \text{ N}$$

$$P\ell a_3 = P_3 + \frac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} + \frac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} = +6645.6 \text{ N}$$

$$P\ell a_4 = P_4 - \frac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} - \frac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} = -1255.6 \text{ N}$$

■Applied load in the lateral direction Ptℓa_n

$$Pt \ell a_1 = -\frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = -333.3 N$$

$$Pt \ell a_2 = + \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = +333.3 N$$

$$Pt\ell a_3 = + \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = +333.3N$$

$$Pt \ell a_4 = -\frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} = -333.3 N$$

During leftward deceleration

■Applied load in the radial direction Pℓdn

$$P\ell d_1 = P_1 + \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} + \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} = +3946.6N$$

$$P\ell d_2 = P_2 - \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} - \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} = + 3403.4 N$$

$$P\ell d_3 = P_3 - \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} - \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} = + 2423.4N$$

$$P\ell d_4 = P_4 + \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} + \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} = +2966.6 N$$

■Applied load in the lateral direction Ptℓdn

$$\begin{split} & \text{Pt}\ell d_1 = + \quad \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} \quad = + \; 111.1 N \\ & \text{Pt}\ell d_2 = - \quad \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} \quad = - \; 111.1 N \\ & \text{Pt}\ell d_3 = - \quad \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} \quad = - \; 111.1 N \\ & \text{Pt}\ell d_4 = + \quad \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} \quad = + \; 111.1 N \end{split}$$

During rightward acceleration

■Applied load in the radial direction Pran

$$\begin{array}{lll} Pra_1 &=& P_1 + & \dfrac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} & + & \dfrac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} & = \ +6057.6 \, N \\ \\ Pra_2 &=& P_2 - & \dfrac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} & - & \dfrac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} & = \ +1292.4 \, N \\ \\ Pra_3 &=& P_3 - & \dfrac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} & - & \dfrac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} & = \ + \ 312.4 \, N \\ \\ Pra_4 &=& P_4 + & \dfrac{m_1 \cdot \alpha_1 \cdot \ell_5}{2 \cdot \ell_0} & + & \dfrac{m_2 \cdot \alpha_1 \cdot \ell_4}{2 \cdot \ell_0} & = \ +5077.6 \, N \\ \end{array}$$

■Applied load in the lateral direction Ptran

$$\begin{split} & \text{Ptra}_1 = + \ \ \, \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} \ \, = + \, 333.3 \, \text{N} \\ & \text{Ptra}_2 = - \ \, \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} \ \, = - \, 333.3 \, \text{N} \\ & \text{Ptra}_3 = - \ \, \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} \ \, = - \, 333.3 \, \text{N} \\ & \text{Ptra}_4 = + \ \, \frac{m_1 \cdot \alpha_1 \cdot \ell_3}{2 \cdot \ell_0} \ \, = + \, 333.3 \, \text{N} \end{split}$$

During rightward deceleration

■Applied load in the radial direction Prd₁

$$\begin{array}{lll} \text{Prd}_1 &=& P_1 \; - \; \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} \; - \; \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} \; = +1835.4 \, \text{N} \\ \\ \text{Prd}_2 &=& P_2 \; + \; \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} \; + \; \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} \; = +5514.6 \, \text{N} \\ \\ \text{Prd}_3 &=& P_3 \; + \; \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} \; + \; \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} \; = +4534.6 \, \text{N} \\ \\ \text{Prd}_4 &=& P_4 \; - \; \frac{m_1 \cdot \alpha_3 \cdot \ell_5}{2 \cdot \ell_0} \; - \; \frac{m_2 \cdot \alpha_3 \cdot \ell_4}{2 \cdot \ell_0} \; = + \; 855.4 \, \text{N} \end{array}$$

■Applied load in the lateral direction Ptrd₁

$$Ptrd_1 = -\frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} = -111.1 \, N$$

$$Ptrd_2 = + \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} = + 111.1 \, N$$

$$Ptrd_3 = + \frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0} = + 111.1 \, N$$

Ptrd₄ = +
$$\frac{m_1 \cdot \alpha_3 \cdot \ell_3}{2 \cdot \ell_0}$$
 = -111.1 N

[Combined Radial And Thrust Load]

• During uniform motion:

$$P_{E1} = P_1 = 2891 \text{ N}$$

$$P_{E2} = P_2 = 4459 \text{ N}$$

$$P_{E3} = P_3 = 3479 \text{ N}$$

$$P_{E4} = P_4 = 1911 \text{ N}$$

During leftward acceleration

$$P_{E}\ell a_{1} = |P\ell a_{1}| + |Pt\ell a_{1}| = 608.9 \text{ N}$$

$$P_{E}\ell a_{2} = |P\ell a_{2}| + |Pt\ell a_{2}| = 7958.9 \text{ N}$$

 $P_{E}\ell a_{3} = |P\ell a_{3}| + |Pt\ell a_{3}| = 6978.9 \text{ N}$

$$P_{E}\ell a_{4} = |P\ell a_{4}| + |Pt\ell a_{4}| = 1588.9 \text{ N}$$

During leftward deceleration

$$P_{E}\ell d_{1} = |P\ell d_{1}| + |Pt\ell d_{1}| = 4057.7 \text{ N}$$

$$P_{E}\ell d_{2} = |P\ell d_{2}| + |Pt\ell d_{2}| = 3514.5 \text{ N}$$

$$P_{E}\ell d_{3} = |P\ell d_{3}| + |Pt\ell d_{3}| = 2534.5 \text{ N}$$

$$P_{E}\ell d_{4} = |P\ell d_{4}| + |Pt\ell d_{4}| = 3077.7 \text{ N}$$

[Static Safety Factor]

As indicated above, the maximum load is applied to the LM Guide during the leftward acceleration of the second LM block. Therefore, the static safety factor (f_s) is obtained in the following equation.

$$f_s = \frac{C_0}{P_E \ell \, a_2} = \frac{81.4 \times 10^3}{7958.9} = 10.2$$

During rightward acceleration

$$P_{E}ra_{1} = |Pra_{1}| + |Ptra_{1}| = 6390.9 N$$

$$P_E ra_2 = |Pra_2| + |Ptra_2| = 1625.7 \text{ N}$$

 $P_E ra_2 = |Pra_2| + |Ptra_2| = 645.7 \text{ N}$

During rightward deceleration

$$P_{E}rd_{1} = |Prd_{1}| + |Ptrd_{1}| = 1946.5 N$$

$$P_{E}rd_{2} = |Prd_{2}| + |Ptrd_{2}| = 5625.7 N$$

$$P_{E}rd_{3} = | Prd_{3} | + | Ptrd_{3} | = 4645.7 N$$

[Average Load Pmn]

Obtain the average load applied to each LM block.

$$\begin{split} P_{m1} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{s}}} \left(P_{E}\ell \, a_{1}^{3} \cdot S_{1} + P_{E1}^{3} \cdot S_{2} + P_{E}\ell \, d_{1}^{3} \cdot S_{3} + P_{E}ra_{1}^{3} \cdot S_{1} + P_{E1}^{3} \cdot S_{2} + P_{E}rd_{1}^{3} \cdot S_{3} \right) \\ &= \sqrt[3]{\frac{1}{2 \times 1450}} (608.9^{3} \times 12.5 + 2891^{3} \times 1400 + 4057.7^{3} \times 37.5 + 6390.9^{3} \times 12.5 + 2891^{3} \times 1400 + 1946.5^{3} \times 37.5) \end{split}$$

$$= 2940.1N$$

$$\begin{split} P_{m2} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{s}}} \left(P_{E} \ell \, a_{2}^{3} \cdot S_{1} + P_{E2}^{3} \cdot S_{2} + P_{E} \ell \, d_{2}^{3} \cdot S_{3} + P_{E} r a_{2}^{3} \cdot S_{1} + P_{E2}^{3} \cdot S_{2} + P_{E} r d_{2}^{3} \cdot S_{3}\right) \\ &= \sqrt[3]{\frac{1}{2 \times 1450}} \left(7958.9^{3} \times 12.5 + 4459^{3} \times 1400 + 3514.5^{3} \times 37.5 + 1625.7^{3} \times 12.5 + 4459^{3} \times 1400 + 5625.7^{3} \times 37.5\right) \end{split}$$

$$= 4492.2N$$

$$\begin{split} P_{m3} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{S}}} \left(P_{E} \ell \; a_{3}{}^{3} \cdot S_{1} + P_{E3}{}^{3} \cdot S_{2} + P_{E} \ell \; d_{3}{}^{3} \cdot S_{3} + P_{E} r a_{3}{}^{3} \cdot S_{1} + P_{E3}{}^{3} \cdot S_{2} + P_{E} r d_{3}{}^{3} \cdot S_{3} \right) \\ &= \sqrt[3]{\frac{1}{2 \times 1450}} \left(6978.9^{3} \times 12.5 + 3479^{3} \times 1400 + 2534.5^{3} \times 37.5 + 645.7^{3} \times 12.5 + 3479^{3} \times 1400 + 4645.7^{3} \times 37.5 \right) \end{split}$$

$$\begin{split} P_{m4} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{s}}} \left(P_{E} \ell \, a_{4}^{3} \cdot S_{1} + P_{E4}^{3} \cdot S_{2} + P_{E} \ell \, d_{4}^{3} \cdot S_{3} + P_{E} r a_{4}^{3} \cdot S_{1} + P_{E4}^{3} \cdot S_{2} + P_{E} r d_{4}^{3} \cdot S_{3} \right) \\ &= \sqrt[3]{\frac{1}{2 \times 1450}} \left(1588.9^{3} \times 12.5 + 1911^{3} \times 1400 + 3077.7^{3} \times 37.5 + 5410.9^{3} \times 12.5 + 1911^{3} \times 1400 + 966.5^{3} \times 37.5 \right) \end{split}$$

= 1985.5N [Nominal Life L_n]

The nominal life of the four LM blocks is obtained from the corresponding nominal life equations shown below

$$L_{1} = \left(\frac{C}{f_{W} \cdot P_{m1}}\right)^{3} \times 50 = 73700 \text{ km}$$

$$L_{2} = \left(\frac{C}{f_{W} \cdot P_{m2}}\right)^{3} \times 50 = 20600 \text{ km}$$

$$L_{3} = \left(\frac{C}{f_{W} \cdot P_{m3}}\right)^{3} \times 50 = 43000 \text{ km}$$

$$L_{4} = \left(\frac{C}{f_{W} \cdot P_{m4}}\right)^{3} \times 50 = 239000 \text{ km}$$
(where $f_{W} = 1.5$)

Therefore, the service life of the LM Guide used in a machine or equipment under the conditions stated above is equivalent to the nominal life of the second LM block, which is 20,600 km.

Example of Calculating the Nominal Life (2) - with Vertical Mount

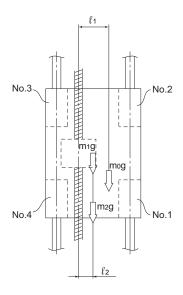
[Conditions]

Model No. : HSR25CA2SS+1500L-II

(basic dynamic load rating: C =19.9 kN)

(basic static load rating: C₀=34.4 kN)

Mass : m_0 =100 kg Distance : ℓ_0 =300 mm


 m_1 = 200 kg ℓ_1 = 80 mm m_2 = 100 kg ℓ_2 = 50 mm

Stroke : ℓ_s =1000 mm ℓ_s =280 mm ℓ_s =150 mm

ℓ₅=250 mm

The mass (m₀) is loaded only during ascent; it is removed during descent.

Gravitational acceleration g=9.8 (m/s²)

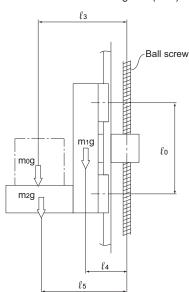


Fig.14 Condition

[Load Applied to the LM Block]

During Ascent

■Load applied to each LM block in the radial direction Pu₁ during ascent

$$\begin{array}{lll} Pu_1 & = & + & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} & + & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} & + & \frac{m_0g \cdot \ell_3}{2 \cdot \ell_0} & = & + & 1355.6 \; N \\ \\ Pu_2 & = & - & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} & - & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} & - & \frac{m_0g \cdot \ell_3}{2 \cdot \ell_0} & = & - & 1355.6 \; N \\ \\ Pu_3 & = & - & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} & - & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} & - & \frac{m_0g \cdot \ell_3}{2 \cdot \ell_0} & = & - & 1355.6 \; N \\ \\ Pu_4 & = & + & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} & + & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} & + & \frac{m_0g \cdot \ell_3}{2 \cdot \ell_0} & = & + & 1355.6 \; N \\ \end{array}$$

■Load applied to each LM block in the lateral direction Ptun during ascent

$$\begin{array}{lll} \text{Ptu}_1 & = & + & \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} \ + & \frac{m_2 g \cdot \ell_2}{2 \cdot \ell_0} \ + & \frac{m_0 g \cdot \ell_1}{2 \cdot \ell_0} \ = & + 375.7 \ \text{N} \\ \\ \text{Ptu}_2 & = & - & \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} \ - & \frac{m_2 g \cdot \ell_2}{2 \cdot \ell_0} \ - & \frac{m_0 g \cdot \ell_1}{2 \cdot \ell_0} \ = & - 375.7 \ \text{N} \\ \\ \text{Ptu}_3 & = & - & \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} \ - & \frac{m_2 g \cdot \ell_2}{2 \cdot \ell_0} \ - & \frac{m_0 g \cdot \ell_1}{2 \cdot \ell_0} \ = & - 375.7 \ \text{N} \\ \\ \text{Ptu}_4 & = & + & \frac{m_1 g \cdot \ell_2}{2 \cdot \ell_0} \ + & \frac{m_2 g \cdot \ell_2}{2 \cdot \ell_0} \ + & \frac{m_0 g \cdot \ell_1}{2 \cdot \ell_0} \ = & + 375.7 \ \text{N} \\ \end{array}$$

During Descent

■Load applied to each LM block in the radial direction Pd₁ during descent

$$\begin{array}{lll} Pd_1 & = & + & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} \ + & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} \ = & + \, 898.3 \ N \\ \\ Pd_2 & = & - & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} \ - & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} \ = & - \, 898.3 \ N \\ \\ Pd_3 & = & - & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} \ - & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} \ = & - \, 898.3 \ N \\ \\ Pd_4 & = & + & \frac{m_1g \cdot \ell_4}{2 \cdot \ell_0} \ + & \frac{m_2g \cdot \ell_5}{2 \cdot \ell_0} \ = & + \, 898.3 \ N \end{array}$$

■Load applied to each LM block in the lateral direction Ptd_n during descent

$$\begin{array}{lll} Ptd_1 & = & + & \frac{m_1g \cdot \ell_2}{2 \cdot \ell_0} + \frac{m_2g \cdot \ell_2}{2 \cdot \ell_0} = & + 245 \; N \\ \\ Ptd_2 & = & - & \frac{m_1g \cdot \ell_2}{2 \cdot \ell_0} - \frac{m_2g \cdot \ell_2}{2 \cdot \ell_0} = & - 245 \; N \\ \\ Ptd_3 & = & - & \frac{m_1g \cdot \ell_2}{2 \cdot \ell_0} - \frac{m_2g \cdot \ell_2}{2 \cdot \ell_0} = & - 245 \; N \\ \\ Ptd_4 & = & + & \frac{m_1g \cdot \ell_2}{2 \cdot \ell_0} + \frac{m_2g \cdot \ell_2}{2 \cdot \ell_0} = & + 245 \; N \end{array}$$

[Combined Radial And Thrust Load]

During Ascent

$$\begin{split} &P_{Eu1} = \mid P_{u1} \mid + \mid Pt_{u1} \mid = 1731.3 \text{ N} \\ &P_{Eu2} = \mid P_{u2} \mid + \mid Pt_{u2} \mid = 1731.3 \text{ N} \\ &P_{Eu3} = \mid P_{u3} \mid + \mid Pt_{u3} \mid = 1731.3 \text{ N} \\ &P_{Eu3} = \mid P_{u4} \mid + \mid Pt_{u4} \mid = 1731.3 \text{ N} \end{split}$$

During Descent

$$P_{Ed1} = |Pd_1| + |Ptd_1| = 1143.3 \text{ N}$$
 $P_{Ed2} = |Pd_2| + |Ptd_2| = 1143.3 \text{ N}$
 $P_{Ed3} = |Pd_3| + |Ptd_3| = 1143.3 \text{ N}$
 $P_{Ed4} = |Pd_4| + |Ptd_4| = 1143.3 \text{ N}$

[Static Safety Factor]

The static safety factor (fs) of the LM Guide used in a machine or equipment under the conditions stated above is obtained as follows.

$$f_s = \frac{C_0}{P_{Eu_2}} = \frac{34.4 \times 10^3}{1731.3} = 19.9$$

[Average Load Pmn]

Obtain the average load applied to each LM block.

$$\begin{split} P_{m1} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{S}} \left(P_{EU1}^{3} \cdot \ell_{S} + P_{Ed1}^{3} \cdot \ell_{S} \right)} = 1495.1 \text{ N} \\ P_{m2} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{S}} \left(P_{EU2}^{3} \cdot \ell_{S} + P_{Ed2}^{3} \cdot \ell_{S} \right)} = 1495.1 \text{ N} \\ P_{m3} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{S}} \left(P_{EU3}^{3} \cdot \ell_{S} + P_{Ed3}^{3} \cdot \ell_{S} \right)} = 1495.1 \text{ N} \\ P_{m4} &= \sqrt[3]{\frac{1}{2 \cdot \ell_{S}} \left(P_{EU4}^{3} \cdot \ell_{S} + P_{Ed4}^{3} \cdot \ell_{S} \right)} = 1495.1 \text{ N} \end{split}$$

[Nominal Life L_n]

The nominal life of the four LM blocks is obtained from the corresponding nominal life equations shown below.

Therefore, the service life of the LM Guide used in a machine or equipment under the conditions stated above is 68.200 km.

Predicting the Rigidity

Selecting a Radial Clearance (Preload)

Since the radial clearance of an LM Guide greatly affects the running accuracy, load carrying capacity and rigidity of the LM Guide, it is important to select an appropriate clearance according to the application. In general, selecting a negative clearance (i.e., a preload* is applied) while taking into account possible vibrations and impact generated from reciprocating motion favorably affects the service life and the accuracy.

For specific radial clearances, contact THK. We will help you select the optimal clearance according to the conditions.

The clearances of all LM Guide models (except model HR, GSR and GSR-R, which are separate types) are adjusted as specified before shipment, and therefore they do not need further preload adjustment.

* Preload is an internal load applied to the rolling elements (balls, rollers, etc.) of an LM block in advance in order to increase its rigidity.

Table13 Types of Radial Clearance

	rable to Types of Nadial Glearance			
	Normal Clearance	Clearance C1 (Light Preload)	Clearance C0 (Medium Preload)	
Condition	 The loading direction is fixed, impact and vibrations are minimal and 2 rails are installed in parallel. Very high precision is not required, and the sliding resistance must be as low as possible. 	 An overhang load or moment load is applied. LM Guide is used in a single- rail configuration. Light load and high accuracy are required. 	 High rigidity is required and vibrations and impact are applied. Heavy-cutting machine tool 	
Examples of applications	Beam-welding machine Book-binding machin Automatic packaging machine XY axes of general industrial machinery Automatic sash-manufacturing machine Welding machine Flame cutting machine Tool changer Various kinds of material feeder	Grinding machine table feed axis Automatic coating machine Industrial robot various kinds of material high speed feeder NC drilling machine Vertical axis of general industrial machinery Printed circuit board drilling machine Electric discharge machine Measuring instrument Precision XY table	Machining center NC lathe Grinding stone feed axis of grinding machine Milling machine Vertical/horizontal boring machine Tool rest guide Vertical axis of machine tool	

Service Life with a Preload Considered

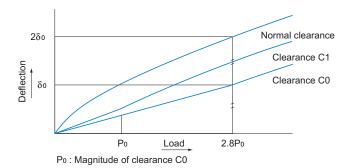
When using an LM Guide under a medium preload (clearance C0), it is necessary to calculate the service life while taking into account the magnitude of the preload.

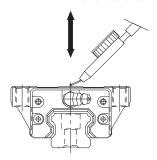
To identify the appropriate preload for any selected LM Guide model, contact THK.

Rigidity

When the LM Guide receives a load, its rolling element, LM blocks and LM rails are elastically deformed within a permissible load range. The ratio between the displacement and the load is called rigidity value. (Rigidity values are obtained using the equation shown below.) The LM Guide's rigidity increases according to the magnitude of the preload. Fig.15 shows rigidity difference between normal, C1 and C0 clearances.

The effect of a preload for a 4-way equal load type is translated into the calculated load approx. 2.8 times greater than the magnitude of the preload.




Fig.15 Rigidity Data

$$K = \frac{P}{\delta}$$

A1-88

Radial Clearance Standard for Each Model

Radial clearance

[Radial clearance for model SSR]

Unit: µm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
15	-4 to +2	-10 to -4
20	-5 to +2	–12 to –5
25	-6 to +3	–15 to –6
30	-7 to +4	–18 to –7
35	-8 to +4	-20 to -8

[Radial clearances of models SHS and SCR]

Unit: µm

			O
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
15	-5 to 0	-12 to -5	_
20	-6 to 0	-12 to -6	– 18 to – 12
25	-8 to 0	-14 to -8	-20 to -14
30	-9 to 0	-17 to -9	-27 to -17
35	-11 to 0	-19 to -11	-29 to -19
45	– 12 to 0	-22 to -12	-32 to -22
55	- 15 to 0	-28 to -16	-38 to -28
65	– 18 to 0	-34 to -22	-45 to -34

[Radial clearance for models SNR/SNS and NR/NRS]

Unit: µm

				Onit. µm
	Indication symbol	Normal	Light preload	Medium preload
Ī	Model No.	No Symbol	C1	C0
ſ	25	-3 to +2	-6 to -3	-9 to -6
	30	-4 to +2	-8 to -4	-12 to -8
	35	-4 to +2	-8 to -4	-12 to -8
ſ	45	-5 to +3	-10 to -5	– 15 to – 10
	55	-6 to +3	-11 to -6	–16 to –11
	65	-8 to +3	-14 to -8	-20 to -14
Ī	75	-10 to +4	-17 to -10	-24 to -17
ſ	85	-13 to +4	-20 to -13	-27 to -20
	100	-14 to +4	-24 to -14	-34 to -24

[Radial clearance for model SHW]

Unit: µm

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
12	-1.5 to 0	-4 to -1	_
14	-2 to 0	-5 to -1	_
17	-3 to 0	-7 to -3	_
21	-4 to +2	-8 to -4	_
27	-5 to +2	-11 to -5	_
35	-8 to +4	-18 to -8	-28 to -18
50	-10 to +5	-24 to -10	-38 to -24

[Radial clearance for model SRS]

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
5	0 to +1.5	-1 to 0
7	-2 to +2	-3 to 0
9	-2 to +2	-4 to 0
12	-3 to +3	-6 to 0
15	-5 to +5	-10 to 0
20	-5 to +5	-10 to 0
25	-7 to +7	–14 to 0

[Radial clearance for models HSR, CSR and HSR-M1]

Unit: µm

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
8	-1 to +1	-4 to -1	_
10	-2 to +2	-5 to -1	_
12	-3 to +3	-6 to -2	_
15	-4 to +2	-12 to -4	_
20	-5 to +2	-14 to -5	-23 to -14
25	-6 to +3	-16 to -6	-26 to -16
30	-7 to +4	-19 to -7	-31 to -19
35	-8 to +4	-22 to -8	-35 to -22

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
45	-10 to +5	-25 to -10	-40 to -25
55	-12 to +5	-29 to -12	-46 to -29
65	-14 to +7	-32 to -14	-50 to -32
85	-16 to +8	-36 to -16	-56 to -36
100	-19 to +9	-42 to -19	-65 to -42
120	-21 to +10	-47 to -21	-73 to -47
150	-23 to +11	-51 to -23	-79 to -51

[Model HSR Grade Ct Radial Clearance]

Unit: µm

Indication symbol	Normal
Model No.	No Symbol
15	-8 to +2
20	-14 to +2
25	-16 to +2
30	-18 to +4
35	-20 to +4

[Radial clearances of models SR and SR-M1]

Unit: u.m

Unit: µm

			Unit: µm
Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
15	-4 to +2	-10 to -4	_
20	-5 to +2	-12 to -5	-17 to -12
25	-6 to +3	-15 to -6	-21 to -15
30	-7 to +4	-18 to -7	-26 to -18
35	-8 to +4	-20 to -8	-31 to -20
45	-10 to +5	-24 to -10	-36 to -24
55	-12 to +5	-28 to -12	-45 to -28
70	-14 to +7	-32 to -14	-50 to -32
85	-20 to +9	-46 to -20	-70 to -46
100	-22 to +10	-52 to -22	-78 to -52
120	-25 to +12	-57 to -25	-87 to -57
150	-29 to +14	-69 to -29	-104 to -69

[Radial clearance for model HRW]

Unit: µm

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
12	-1.5 to +1.5	-4 to -1	_
14	-2 to +2	-5 to -1	_
17	-3 to +2	-7 to -3	_
21	-4 to +2	-8 to -4	_
27	-5 to +2	-11 to -5	_
35	-8 to +4	-18 to -8	-28 to -18
50	-10 to +5	-24 to -10	-38 to -24
60	-12 to +5	-27 to -12	-42 to -27

[Radial clearance for models RSR, RSR-W, RSR-Z, RSR-WZ, RSH, RSH-Z and RSR-M1]

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
3	0 to +1	-0.5 to 0
5	0 to +1.5	-1 to 0
7	-2 to +2	-3 to 0
9	-2 to +2	-4 to 0
12	-3 to +3	-6 to 0
14	-5 to +5	– 10 to 0
15	-5 to +5	– 10 to 0
20	-7 to +7	– 14 to 0

[Radial clearance for model MX]

Unit: μm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
5	0 to +1.5	-1 to 0
7	-2 to +2	-3 to 0

[Radial clearance for model JR]

Unit: μ m

Indication symbol	Normal
Model No.	No Symbol
25	0 to +30
35	0 to +30
45	0 to +50
55	0 to +50

[Radial clearances for models HCR and HMG]

Unit: µm

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
12	-3 to +3	-6 to -2
15	-4 to +2	-12 to -4
25	-6 to +3	–16 to –6
35	-8 to +4	-22 to -8
45	–10 to +5	-25 to -10
65	–14 to +7	-32 to -14

[Radial clearance for model NSR-TBC]

Medium
preload
C0
5 – 25 to – 15
5 – 25 to – 15
5 – 25 to – 15
8 – 36 to – 22
8 – 36 to – 22
10 -42 to -26

[Radial clearance for model HSR-M2]

Unit: μ m

Indication symbol	Normal	Light preload
Model No.	No Symbol	C1
15	-4 to +2	-12 to -4
20	-5 to +2	–14 to –5
25	-6 to +3	–16 to –6

[Radial clearances for models SRG and SRN]

Unit: u.m

Normal	Light preload	Medium preload
No Symbol	C1	C0
-0.5 to 0	-1 to -0.5	-2 to -1
-0.8 to 0	-2 to -0.8	-3 to -2
-2 to -1	-3 to -2	-4 to -3
-2 to -1	-3 to -2	-4 to -3
-2 to -1	-3 to -2	-5 to -3
-2 to -1	-3 to -2	-5 to -3
-2 to -1	-4 to -2	-6 to -4
-3 to -1	-5 to -3	-8 to -5
-3 to -1	-7 to -3	-12 to -7
-3 to -1	-8 to -3	–13 to –8
	No Symbol -0.5 to 0 -0.8 to 0 -2 to -1 -3 to -1 -3 to -1	Normal preload No Symbol C1 -0.5 to 0 -1 to -0.5 -0.8 to 0 -2 to -0.8 -2 to -1 -3 to -2 -2 to -1 -4 to -2 -3 to -1 -5 to -3 -3 to -1 -7 to -3

[Radial clearance for model SRW]

Unit: µm

Indication symbol	Normal	Light preload	Medium preload
Model No.	No Symbol	C1	C0
70	-2 to -1	-3 to -2	-5 to -3
85	-2 to -1	-4 to -2	-6 to -4
100	-3 to -1	-5 to -3	-8 to -5
130	-3 to -1	−7 to −3	–12 to –7
150	-3 to -1	-8 to -3	–13 to –8

[Radial clearance for model EPF]

Indication symbol	Normal
Model No.	No Symbol
7M	
9M	0 or less
12M	0 01 1655
15M]

Determining the Accuracy

Accuracy Standards

Accuracy of the LM Guide is specified in terms of running parallelism, dimensional tolerance for height and width, and height and width difference between a pair when 2 or more LM blocks are used on one rail or when 2 or more rails are mounted on the same plane.

For details, see "Accuracy Standard for Each Model" on \$\blue{1}\$-94 to \$\blue{1}\$-103.

[Running of Parallelism]

It refers to the tolerance for parallelism between the LM block and the LM rail reference surface when the LM block travels the whole length of the LM rail with the LM rail secured on the reference reference surface using bolts.

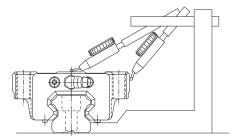


Fig.16 Running of Parallelism

[Difference in Height M]

Indicates a difference between the minimum and maximum values of height (M) of each of the LM blocks used on the same plane in combination.

[Difference in Width W₂]

Indicates a difference between the minimum and maximum values of the width (W₂) between each of the LM blocks, mounted on one LM rail in combination, and the LM rail.

Note1) When 2 or more rails are used on the same plane in parallel, only the width (W2) tolerance and the difference on the master rail apply. The master LM rail is imprinted with "KB" (except for normal grade products) following the serial number

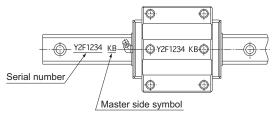


Fig.17 Master LM Rail

Note2) Accuracy measurements each represent the average value of the central point or the central area of the LM block.

Note3) The LM rail is smoothly curved so that the required accuracy is easily achieved by pressing the rail to the reference surface of the machine.

If it is mounted on a less rigid base such as an aluminum base, the curve of the rail will affect the accuracy of the machine. Therefore, it is necessary to define straightness of the rail in advance.

Table14 shows guidelines for selecting an accuracy grade of the LM Guide according to the machine type.

Table14 Guideline for Accuracy Grades by Machine Type

Type of machine				Accı	uracy gra	des		
	Type of machine	Ct7	Ct5	Normal	Н	Р	SP	UP
	Machining center					•	•	
	Lathe					•	•	
	Milling machine					•	•	
	Boring machine					•	•	
	Jig borer						•	•
	Grinding machine						•	•
0	Electric discharge machine					•	•	•
Machine tool	Punching press				•	•		
l ii	Laser beam machine				•	•	•	
Ma	Woodworking machine	•	•	•	•	•		
	NC drilling machine				•	•		
	Tapping center				•	•		
	Palette changer			•				
	ATC	•	•	•				
	Wire cutting machine					•	•	
	Dressing machine						•	•
ial	Cartesian coordinate			•	•	•		
Industrial robot	Cylindrical coordinate			•	•			
	Wire bonding machine					•	•	
urin ent	Prober						•	•
fact	Electronic component inserter				•	•		
Semiconductor manufacturing equipment	Printed circuit board drilling machine				•	•	•	
	Injection molding machine			•	•			
	3D measuring instrument						•	•
=	Office equipment	•	•	•	•			
nen	Conveyance system	•	•	•	•			
Other equipment	XY table				•	•	•	
be .	Coating machine	•	•	•	•			
ther	Welding machine	•	•	•	•			
0	Medical equipment			•	•			
	Digitizer				•	•	•	
	Inspection equipment					•	•	•

Ct7 : Grade Ct7

Normal : Normal grade
H : High accuracy grade
P : Precision grade

P : Precision grade
SP : Super precision grade
UP : Ultra precision grade

Ct5 : Grade Ct5

Accuracy Standard for Each Model

• Accuracies of models XSHS, SSR, SNR/SNS, SHW, HSR, SR, NR/NRS, HRW, NSR-TBC, HSR-M1, SR-M1 HSR-M2, SRG and SRN are categorized into Ct7 grade (Ct7), Ct5 grade (Ct5), Normal grade (no symbol), High accuracy grade (H), Precision grade (P), Super precision grade (SP) and Ultra precision grade (UP) by model numbers, as indicated in Table16 on ▲1-95.

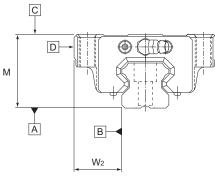


Fig.18

Table15 LM Rail Length and Running Parallelism by Accuracy Standard

Unit: µm

LM rail ler	ngth (mm)	Running Parallelism Values						
Above	Or less	Grade Ct7	Grade Ct5	Normal grade	High- accuracy grade	Precision grade	Super precision grade	Ultra precision grade
_	50	6	6	5	3	2	1.5	1
50	80	6	6	5	3	2	1.5	1
80	125	6	6	5	3	2	1.5	1
125	200	7	6	5	3.5	2	1.5	1
200	250	9.5	6.5	6	4	2.5	1.5	1
250	315	11	7.5	7	4.5	3	1.5	1
315	400	13	8.5	8	5	3.5	2	1.5
400	500	16	11	9	6	4.5	2.5	1.5
500	630	18	13	11	7	5	3	2
630	800	20	15	12	8.5	6	3.5	2
800	1000	23	16	13	9	6.5	4	2.5
1000	1250	26	18	15	11	7.5	4.5	3
1250	1600	28	20	16	12	8	5	4
1600	2000	31	23	18	13	8.5	5.5	4.5
2000	2500	34	25	20	14	9.5	6	5
2500	3090	36	27	21	16	11	6.5	5.5

Note) Ct7 and Ct5 class are only applicable for model HSR.

Determining the Accuracy

Table16 Accuracy Standards for Models SHS, SSR, SNR/SNS, SHW, HSR, SR, NR/NRS, HRW, NSR-TBC, HSR-M1, SR-M1, HSR-M2, SRG, and SRN.

Unit: mm

Model	Accuracy standards	Grade Ct7	Grade Ct5	Normal grade	High- accuracy grade	Precision grade	Super precision grade	Ultra precision grade		
No.	Item	Ct7	Ct5	No Sym- bol	Н	Р	SP	UP		
	Dimensional tolerance in height M	I	I	±0.07	±0.03	±0.015	±0.007	-		
	Difference in height M	-	-	0.015	0.007	0.005	0.003	-		
8	Dimensional tolerance in width W ₂	_		±0.04	±0.02	±0.01	±0.007	_		
10 12	Difference in width W ₂	_	_	0.02	0.01	0.006	0.004	_		
14	Running parallelism of surface C against surface A	ΔC (as shown in Δ1-94 Table15)								
	Running parallelism of surface D against surface B	ΔD (as shown in Δ 1-94 Table15)								
	Dimensional tolerance in height M	±0.12	±0.12	±0.07	±0.03	0 -0.03	0 -0.015	0 -0.008		
	Difference in height M	0.025	0.025	0.02	0.01	0.006	0.004	0.003		
15 17	Dimensional tolerance in width W ₂	±0.12	±0.12	±0.06	±0.03	0 -0.02	0 -0.015	0 -0.008		
20	Difference in width W ₂	0.025	0.025	0.02	0.01	0.006	0.004	0.003		
21	Running parallelism of surface C against surface A	ΔC (as shown in Δ 1-94 Table15)								
	Running parallelism of surface D against surface B	ΔD (as shown in Δ 1-94 Table15)								
	Dimensional tolerance in height M	±0.12	±0.12	±0.08	±0.04	0 -0.04	0 -0.02	0 -0.01		
	Difference in height M	0.025	0.025	0.02	0.015	0.007	0.005	0.003		
25 27	Dimensional tolerance in width W ₂	±0.12	±0.12	±0.07	±0.03	0 -0.03	0 -0.015	0 -0.01		
30	Difference in width W ₂	0.035	0.035	0.025	0.015	0.007	0.005	0.003		
35	Running parallelism of surface C against surface A	ΔC (as shown in ▲1-94 Table15)								
	Running parallelism of surface D against surface B		Δ	D (as show	wn in 🖪 1-	94 Table1	5)			
	Dimensional tolerance in height M	-	_	±0.08	±0.04	0 -0.05	0 -0.03	0 -0.015		
40	Difference in height M	_	-	0.025	0.015	0.007	0.005	0.003		
45 50	Dimensional tolerance in width W ₂	_	_	±0.07	±0.04	0 -0.04	0 -0.025	0 -0.015		
55	Difference in width W ₂	-		0.03	0.015	0.007	0.005	0.003		
60	Running parallelism of surface C against surface A		Δ	C (as show	wn in 🖪 1-9	94 Table1	5)			
	Running parallelism of surface D against surface B		Δ	D (as show	wn in 🔼 1-	94 Table1	,			
	Dimensional tolerance in height M	_	_	±0.08	±0.04	0 -0.05	0 -0.04	0 -0.03		
65	Difference in height M		-	0.03	0.02	0.01	0.007	0.005		
70 75 85	Dimensional tolerance in width W ₂	_	_	±0.08	±0.04	0 -0.05	0 -0.04	0 -0.03		
100	Difference in width W ₂		_	0.03	0.02	0.01	0.007	0.005		
120 150	Running parallelism of surface C against surface A		Δ	C (as show	wn in 🗚 1-	94 Table1	5)			
	Running parallelism of surface D against surface B		Δ	D (as show	wn in 🗚 1-9	94 Table1	5)			

Note) XFor models SRG and SRN, only precision or higher grades apply. (Ct7 grade, Ct5 grade, normal grade and high accuracy grade are not available.) Note) Ct7 and Ct5 class are only applicable for model HSR. Note) The difference between Ct7 grade and Ct5 grade pairs with a height M and a width W_2 is the value for one shaft.

• Accuracies of model HMG are defined by model number as indicated in Table17.

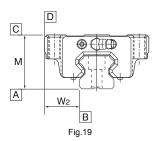


Table17 Model HMG Accuracy Standard

Unit: mm

Table18 LM Rail Length and Running Parallelism by Accuracy Standard Unit: μm

Model	Accuracy Standards	Normal grade
No.	Item	No symbol
	Dimensional tolerance in height M	±0.1
	Difference in height M	0.02
15	Dimensional tolerance in width W ₂	±0.1
	Difference in width W2	0.02
	Running parallelism of surface C against surface A	ΔC (as shown in Table18)
	Running parallelism of surface D against surface B	ΔD (as shown in Table18)
	Dimensional tolerance in height M	±0.1
	Difference in height M	0.02
	Dimensional tolerance in width W ₂	±0.1
25 35	Difference in width W2	0.03
35	Running parallelism of surface C against surface A	ΔC (as shown in Table18)
	Running parallelism of surface D against surface B	ΔD (as shown in Table18)
	Dimensional tolerance in height M	±0.1
	Difference in height M	0.03
	Dimensional tolerance in width W ₂	±0.1
45 65	Difference in width W2	0.03
	Running parallelism of surface C against surface A	ΔC (as shown in Table18)
	Running parallelism of surface D against surface B	ΔD (as shown in Table18)

LM rail length (mm)		Running Parallelism Values
Above	Or less	Normal grade
_	125	30
125	200	37
200	250	40
250	315	44
315	400	49
400	500	53
500	630	58
630	800	64
800	1000	70
1000	1250	77
1250	1600	84
1600	2000	92

 Accuracies of model HCR are categorized into normal and high accuracy grades by model number as indicated in Table19.

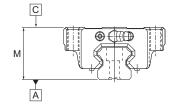


Fig.20

Table19 Accuracy Standard for Model HCR

	Table20 LM Rail Length and Running Parallelism by Accuracy Standard
nit: mm	Unit: μm

Model No.	Accuracy standards	Normal grade	High-accuracy grade	
INO.	Item	No Symbol	Н	
12	Dimensional tolerance in height M	±0.2	±0.2	
	Difference in height M	0.05 0.03		
25 35	Running parallelism of surface C against surface A	ΔC (as shown in Table20)		
	Dimensional tolerance in height M	±0.2	±0.2	
45	Difference in height M	0.06	0.04	
65	Running parallelism of surface C against surface A	ΔC (as shown in Table20)		

LM rail length (mm)		Running Parallelism Values		
Above	Or less	Normal grade	High-accuracy grade	
_	125	30	15	
125	200	37	18	
200	250	40	20	
250	315	44	22	
315	400	49	24	
400	500	53	26	
500	630	58	29	
630	800	64	32	
800	1000	70	35	
1000	1250	77	38	
1250	1600	84	42	
1600	2000	92	46	

• Accuracies of model JR are defined by model number as indicated in Table21.

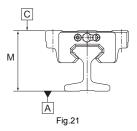
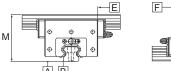


Table21 Accuracy Standard for Model JR


Unit: mm

Model	Accuracy standards	Normal grade
No.	Item	No Symbol
	Difference in height M	0.05
25 35	Running parallelism of surface C against surface A	$\Delta \mathrm{C}$ (as shown in Table22)
	Difference in height M	0.06
45 55	Running parallelism of surface C against surface A	ΔC (as shown in Table22)

Table22 LM Rail Length and Running Parallelism by Accuracy Standard Unit: μm

LM rail length (mm)		Running Parallelism Values
Above	Or less	Normal grade
_	50	5
50	80	5
80	125	5
125	200	6
200	250	8
250	315	9
315	400	11
400	500	13
500	630	15
630	800	17
800	1000	19
1000	1250	21
1250	1600	23
1600	2000	26
2000	2500	28
2500	3150	30
3150	4000	33
4000	5000	34

 Accuracies of models SCR and CSR are categorized into precision, super precision and ultra precision grades by model number as indicated in Table23.

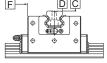


Fig.22

Table23 Accuracy Standard for Models SCR and CSR Unit: mm

Super Precision Accuracy standards precision precision Model grade grade grade No. SP ΠP Item 0.01 0.007 0.005 Difference in height M Perpendicularity of surface 0.005 0.004 0.003 D against surface B 15 ΔC Running parallelism of 20 surface E against surface B (as shown in Table24) Running parallelism of surface F against surface D ΔD (as shown in Table24) 0.007 0.005 Difference in height M 0.01 Perpendicularity of surface 0.008 0.006 0.004 D against surface B 25 Running parallelism of ΔC surface E against surface B (as shown in Table24) ΛD Running parallelism of surface F against surface D (as shown in Table 24) Difference in height M 0.01 0.007 0.005 Perpendicularity of surface 0.01 0.007 0.005 D against surface B 30 ΛC Running parallelism of surface E against surface B 35 (as shown in Table24) Running parallelism of surface F against surface D (as shown in Table24) 0.012 0.008 0.006 Difference in height M Perpendicularity of surface 0.012 0.008 0.006 D against surface B ΔC 45 Running parallelism of surface E against surface B (as shown in Table24) ΔD Running parallelism of surface F against surface D (as shown in Table24) 0.018 0.012 0.009 Difference in height M Perpendicularity of surface 0.018 0.012 0.009 D against surface B ΔC 65 Running parallelism of surface E against surface B (as shown in Table24) Running parallelism of surface F against surface D ΔD (as shown in Table24)

Table24 LM Rail Length and Running Parallelism by Accuracy Standard Unit: μm

LM rail length (mm)		Running Parallelism Values			
Above	Or less	Precision grade	Super precision grade	Ultra precision grade	
_	50	2	1.5	1	
50	80	2	1.5	1	
80	125	2	1.5	1	
125	200	2	1.5	1	
200	250	2.5	1.5	1	
250	315	3	1.5	1	
315	400	3.5	2	1.5	
400	500	4.5	2.5	1.5	
500	630	5	3	2	
630	800	6	3.5	2	
800	1000	6.5	4	2.5	
1000	1250	7.5	4.5	3	
1250	1600	8	5	4	
1600	2000	8.5	5.5	4.5	
2000	2500	9.5	6	5	
2500	3090	11	6.5	5.5	

Determining the Accuracy

 Accuracies of model HR are categorized into normal, high accuracy, precision, super precision and ultra precision grades as indicated in Table25.

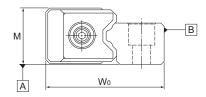


Fig.23

Table25 Accuracy Standard for Model HR

Unit: mm

Accuracy standards	Normal grade	High- accuracy grade	Precision grade	Super precision grade	Ultra precision grade
Item	No Symbol	Н	Р	SP	UP
Dimensional tolerance in height M	±0.1	±0.05	±0.025	±0.015	±0.01
Difference in height M Note 1)	0.03	0.02	0.01	0.005	0.003
Dimensional tolerance for total width Wo	±0).1		±0.05	
Difference in total width W ₀ Note 2)	0.03	0.015	0.01	0.005	0.003
Parallelism of the raceway against surfaces A and B	es ΔC (as shown in Table26)				

Note1) Difference in height M applies to a set of LM Guides used on the same plane.

Note2) Difference in total width W₀ applies to LM blocks used in combination on one LM rail.

Note3) Dimensional tolerance and difference in total width W₀ for precision and higher grades apply only to the master-rail side among a set of LM Guides. The master rail is imprinted with "KB" following a serial number.

Table26 LM Rail Length and Running Parallelism by Accuracy Standard

LM rail le	ngth (mm)	Running Parallelism Values				
Above	Or less	Normal grade	High-accuracy grade	Precision grade	Super precision grade	Ultra precision grade
_	50	5	3	2	1.5	1
50	80	5	3	2	1.5	1
80	125	5	3	2	1.5	1
125	200	5	3.5	2	1.5	1
200	250	6	4	2.5	1.5	1
250	315	7	4.5	3	1.5	1
315	400	8	5	3.5	2	1.5
400	500	9	6	4.5	2.5	1.5
500	630	11	7	5	3	2
630	800	12	8.5	6	3.5	2
800	1000	13	9	6.5	4	2.5
1000	1250	15	11	7.5	4.5	3
1250	1600	16	12	8	5	4
1600	2000	18	13	8.5	5.5	4.5
2000	2500	20	14	9.5	6	5
2500	3000	21	16	11	6.5	5.5

 Accuracies of model GSR are categorized into normal, high accuracy and precision grades by model number as indicated in Table27.

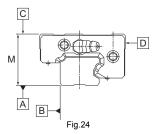


Table27 Accuracy Standard for Model GSR

Unit: mm

Model No.	Accuracy standards	Normal grade	High- accuracy grade	Precision grade	
	Item	No Symbol	Н	Р	
	Dimensional tolerance in height M	±0.02			
15 20	Running parallelism of surface C against surface A	ΔC (as shown in Table28)			
	Running parallelism of surface D against surface B	ΔD (as shown in Table28)			
Dimensional tolerance in height M		±0.03			
25 30 35	Running parallelism of surface C against surface A	ΔC (as shown in Table28		able28)	
33	Running parallelism of surface D against surface B	ΔD (as shown in Table28)		able28)	

Table28 LM Rail Length and Running Parallelism by Accuracy Standard Unit: μm

LM rail ler	ngth (mm)	Running Parallelism Values		n Values
Above	Or less	Normal grade	High- accuracy grade	Precision grade
_	50	5	3	2
50	80	5	3	2
80	125	5	3	2
125	200	5	3.5	2
200	250	6	4	2.5
250	315	7	4.5	3
315	400	8	5	3.5
400	500	9	6	4.5
500	630	11	7	5
630	800	12	8.5	6
800	1000	13	9	6.5
1000	1250	15	11	7.5
1250	1600	16	12	8
1600	2000	18	13	8.5
2000	2500	20	14	9.5
2500	3000	21	16	11

Accuracies of model GSR-R are categorized into normal and high accuracy grades by model number as indicated in Table29.

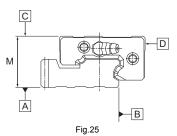


Table29 Accuracy Standard for GSR-R

Unit: mm

Model No.	Accuracy standards	Normal grade	High-accuracy grade
INO.	Item	No Symbol	Н
25	Dimensional tolerance in height M	±0	.03
20	Running parallelism of sur- face C against surface A	Δ (as shown	C in Table30)
	Running parallelism of sur- face D against surface B	(as shown	D in Table30)

Table30 LM Rail Length and Running Parallelism by Accuracy Standard Unit: μm

LM rail ler	ngth (mm)	Running Parallelism Valu	
Above	Or less	Normal grade	High-accuracy grade
_	50	5	3
50	80	5	3
80	125	5	3
125	200	5	3.5
200	250	6	4
250	315	7	4.5
315	400	8	5
400	500	9	6
500	630	11	7
630	800	12	8.5
800	1000	13	9
1000	1250	15	11
1250	1600	16	12
1600	2000	18	13
2000	2500	20	14
2500	3000	21	16

 Accuracies of models SRS, RSR, RSR-M1, RSR-W, RSR-Z, RSR-WZ, RSH and RSH-Z are categorized into normal, high accuracy and precision grades by model number as indicated in Table31.

Unit: mm

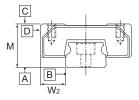


Fig.26

Table31 Accuracy Standards for Models SRS, RSR, RSR-M1, RSR-W, RSR-Z, RSR-WZ, RSH and RSH-Z

Model	Accuracy standards	Normal grade	High- accuracy grade	Precision grade
No.	Item	No Symbol	Н	Р
	Dimensional tolerance in height M	±0.03	_	±0.015
	Difference in height M	0.015	_	0.005
	Dimensional tolerance in width W ₂	±0.03	_	±0.015
3 5	Difference in width W ₂	0.015	_	0.005
5	Running parallelism of surface C against surface A	ΔC (as shown in Table32)		
	Running parallelism of surface D against ΔD (as show surface B		shown in	Table32)
	Dimensional tolerance in height M	±0.04	±0.02	±0.01
7	Difference in height M	0.03	0.015	0.007
9 12	Dimensional tolerance in width W ₂	±0.04	±0.025	±0.015
14	Difference in width W ₂	0.03	0.02	0.01
15 20 25	Running parallelism of surface C against sur- face A	∆C (as s	hown in	Table33)
23	Running parallelism of surface D against surface B	ace D against ΔD (as shown in Table		Table33)

Table32 LM Rail Length and Running Parallelism for Models RSR3 and 5 by Accuracy Standard Unit: μm

LM rail length (mm)		Running Para	llelism Values
Above	Or less	Normal grade	Precision grade
_	25	2.5	1.5
25	50	3.5	2
50	100	5.5	3
100	150	7	4
150	200	8.4	5

Table33 LM Rail Length and Running Parallelism for Models SRS, RSR7 to 25, and RSH by Accuracy Standard

Unit: μm

Οιπ. μπ				
LM rail ler	ngth (mm)	Running Parallelism Value		
Above	Or less	Normal grade	High- accuracy grade	Precision grade
_	40	8	4	1
40	70	10	4	1
70	100	11	4	2
100	130	12	5	2
130	160	13	6	2
160	190	14	7	2
190	220	15	7	3
220	250	16	8	3
250	280	17	8	3
280	310	17	9	3
310	340	18	9	3
340	370	18	10	3
370	400	19	10	3
400	430	20	11	4
430	460	20	12	4
460	490	21	12	4
490	520	21	12	4
520	550	22	12	4
550	580	22	13	4
580	610	22	13	4
610	640	22	13	4
640	670	23	13	4
670	700	23	13	5
700	730	23	14	5
730	760	23	14	5
760	790	23	14	5
790	820	23	14	5
820	850	24	14	5
850	880	24	15	5
880	910	24	15	5
910	940	24	15	5
940	970	24	15	5
970	1000	25	16	5
1000	1030	25	16	5
1030	1060	25	16	6
1060	1090	25	16	6
1090	1120	25	16	6
1120	1150	25	16	6
1150	1180	26	17	6
1180	1210	26	17	6
1210	1240	26	17	6
1240	1270	26	17	6
1270	1300	26	17	6
1300	1330	26	17	6
1330	1360	27	18	6
1360	1390	27	18	6
1390	1420	27	18	6
1420	1450	27	18	7
1450	1480	27	18	7
1480	1510	27	18	7
1510	1540	28	19	7
1540	1570	28	19	7
1570	1800	28	19	7

 Accuracies of model MX are categorized into normal and precision grades by model number as indicated in Table34.

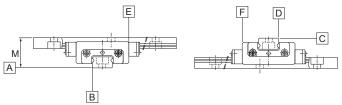


Fig.27

Table34 Accuracy Standard for Model MX

. Unit: mm

Model	Accuracy standards	Normal grade	Precision grade	
No.	Item	No Symbol	Р	
	Difference in height M	0.015	0.005	
	Perpendicularity of surface D against surface B	0.003	0.002	
5	Running parallelism of surface E against surface B	ΔC (as shown in Table35)		
	Running parallelism of surface F against surface D	ΔD (as shown in Table35)		
	Difference in height M	0.03	0.007	
	Perpendicularity of surface D against surface B	0.01	0.005	
7	Running parallelism of surface E against surface B	ΔC (as shown in Table36)		
	Running parallelism of surface F against surface D	Δ (as shown	D in Table36)	

Table35 LM Rail Length and Running Parallelism for Model MX5 by Accuracy Standard

Unit: μm

LM rail length (mm)		Running Parallelism Values	
Above	Or less	Normal grade	Precision grade
_	25	2.5	1.5
25	50	3.5	2
50	100	5.5	3
100	150	7	4
150	200	8.4	5

Table36 LM Rail Length and Running Parallelism for Model MX7 by Accuracy Standard

LM rail le	ngth (mm)	Running Parallelism Value	
Above	Or less	Normal grade	Precision grade
_	40	8	1
40	70	10	1
70	100	11	2
100	130	12	2
130	160	13	2
160	190	14	2
190	220	15	3
220	250	16	3
250	280	17	3
280	310	17	3
310	340	18	3
340	370	18	3
370	400	19	3

Determining the Accuracy

• Accuracies of model SRW are categorized into precision, super precision and ultra precision grades by model number as indicated in Table37.

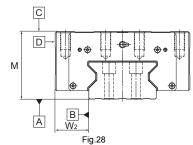


Table37 Accuracy Standard for Model SRW Unit: mm

Table38 LM Rail Length and Running Parallelism by Accuracy Standard Unit: µm

Model No.	Accuracy standards	Precision grade	Super precision grade	Ultra precision grade
140.	Item	Р	SP	UP
	Dimensional tolerance in height M	0 -0.05	0 -0.03	0 -0.015
	Difference in height M	0.007	0.005	0.003
70	Dimensional tolerance in width W ₂	0 -0.04	0 -0.025	0 -0.015
85	Difference in width W ₂	0.007	0.005	0.003
	Running parallelism of surface C against surface A	(as sho	ΔC own in Ta	ible38)
	Running parallelism of surface D against surface B	(as she	ΔD own in Ta	able38)
	Dimensional tolerance in height M	0 -0.05	0 -0.04	0 -0.03
	Difference in height M	0.01	0.007	0.005
	Dimensional tolerance in width W ₂	0 -0.05	0 -0.04	0 -0.03
100	Difference in width W ₂	0.01	0.007	0.005
	Running parallelism of surface C against surface A	ΔC (as shown in Table38)		
	Running parallelism of surface D against surface B	ΔD (as shown in Table38)		
	Dimensional tolerance in height M	0 -0.05	0 -0.04	0 -0.03
	Difference in height M	0.01	0.007	0.005
130	Dimensional tolerance in width M ₂	0 -0.05	0 -0.04	0 -0.03
150	Difference in width W ₂	0.01	0.007	0.005
	Running parallelism of surface C against surface A	(as she	ΔC own in Ta	ıble38)
	Running parallelism of surface D against surface B	ΔD (as shown in Table38)		

LM rail ler	ngth (mm)	Running Parallelism Value		n Values
Above	Or less	Precision grade	Super precision grade	Ultra precision grade
_	50	2	1.5	1
50	80	2	1.5	1
80	125	2	1.5	1
125	200	2	1.5	1
200	250	2.5	1.5	1
250	315	3	1.5	1
315	400	3.5	2	1.5
400	500	4.5	2.5	1.5
500	630	5	3	2
630	800	6	3.5	2
800	1000	6.5	4	2.5
1000	1250	7.5	4.5	3
1250	1600	8	5	4
1600	2000	8.5	5.5	4.5
2000	2500	9.5	6	5
2500	3090	11	6.5	5.5

 Accuracies of model EPF are categorized into normal, high accuracy and precision grades by model number as indicated in Table39.

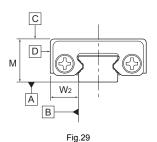


Table39 Accuracy Standard for Model EPF

Unit: mm

Model	Accuracy Standards	Normal grade	High- accuracy grade	Precision grade
No.	Item	No Symbol	Н	Р
	Dimensional tolerance in height M	±0.04	±0.02	±0.01
	Difference in height M	0.03	0.015	0.007
7M 9M	Dimensional tolerance in width M ₂	±0.04	±0.025	±0.015
12M 15M	Running parallelism of surface C against surface A ^{Note)}	0.008	0.004	0.001
	Running parallelism of surface D against surface B ^{Note)}	0.008	0.004	0.001

Note) If the stroke is more than 40 mm, contact THK.

LM Guide Feature of Each Model

Structure and Features of the Caged Ball LM Guide

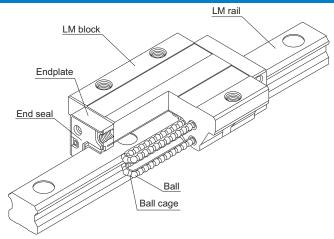


Fig.1 Structural Drawing of the Caged Ball LM Guide Model SHS

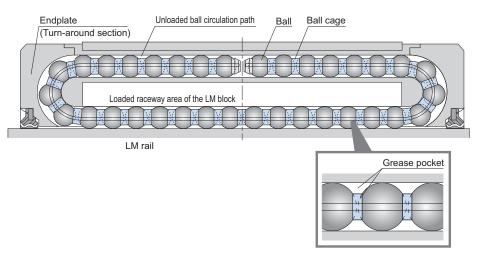


Fig.2 Circulation Structure inside the LM Block of the Caged Ball LM Guide

With the Caged Ball LM Guide, the use of a ball cage allows lines of evenly spaced balls to circulate, thus to eliminate friction between the balls.

In addition, grease held in a space between the ball circulation path and the ball cage (grease pocket) is applied on the contact surface between each ball and the ball cage as the ball rotates, forming an oil film on the ball surface. As a result, an oil film is not easily broken.

Advantages of the Ball Cage Technology

- (1) The absence of friction between balls, together with increased grease retention, achieves long service life and long-term maintenance-free (lubrication-free) operation.
- (2) The absence of ball-to-ball collision achieves low noise and acceptable running sound.
- (3) The absence of friction between balls achieves low heat generation and high speed operation.
- (4) The circulation of lines of evenly spaced balls ensures smooth ball rotation.
- (5) The absence of friction between balls allows high grease retention and low dust generation.

[Long Service Life and Long-term Maintenance-free Operation]

Nominal Life Equation for the LM Guide

$$L = \left(\frac{C}{P}\right)^3 \times 50$$

L : Nominal life (km)
C : Basic dynamic load rating (N)
P : Applied load (N)

As indicated in the equation, the greater the basic dynamic load rating, the longer the nominal life of the LM Guide.

[Example of Calculation]

Comparison of Nominal Life Between the Caged Ball LM Guide model SHS25V and the Conventional Full-ball Type Model HSR25A

Calculation Assuming P = 11.1kN

Basic dynamic rated load (C) of SHS25V = 31.7kN Basic dynamic rated load (C) of HSR25A = 19.9kN

Model SHS25V
$$L = \left(\frac{C}{P}\right)^3 \times 50 = \left(\frac{31.7}{11.1}\right)^3 \times 50 = 1160 \text{ km}$$

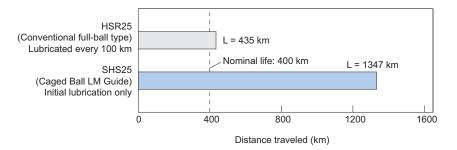
Model HSR25A
$$L = \left(\frac{C}{P}\right)^3 \times 50 = \left(\frac{19.9}{11.1}\right)^3 \times 50 = 280 \text{ km}$$

The nominal life of the Caged Ball LM Guide model SHS25V is 4.0 times * longer than the conventional full-ball type model HSR25A.

^{*} When selecting a model number, it is necessary to perform a service life calculation according to the conditions.

• Data on Long Service Life and Long-term Maintenance-free Operation

Use of a ball cage eliminates friction between balls and increases grease retention, thus to achieve long service life and long-term maintenance-free operation.

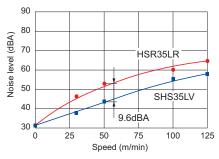

[Condition]

Model No. : SHS25/HSR25

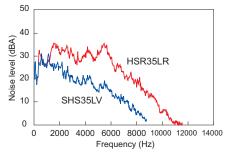
Speed: 60m/min Stroke: 350mm Acceleration: 9.8m/s² Orientation: horizontal

Load : Caged Ball LM Guide model SHS: 11.1kN

Conventional full-ball type model HSR: 9.8kN



[Low Noise, Acceptable Running Sound]


Noise Level Data

Since the ball circulation path inside the LM block is made of resin, metallic noise between balls and the LM block is eliminated. In addition, use of a ball cage eliminates metallic noise of ball-to-ball collision, allowing a low noise level to be maintained even at high speed.

Model SHS35LV: Caged Ball LM Guide Model HSR35LR: conventional full-ball type

Comparison of Noise Levels between Model SHS35LV and Model HSR35LR

Comparison of Noise Levels between Model SHS35LV and Model HSR35LR (at speed of 50 m/min)

[High Speed]

High-speed Durability Test Data

Since use of a ball cage eliminates friction between balls, only a low level of heat is generated and superbly high speed is achieved.

[Condition] Model No.

: Caged Ball LM Guide Model SHS65LVSS

0

Speed : 200m/min Stroke : 2500mm

Lubrication: initial lubrication only

Applied load: 34.5kN Acceleration: 1.5G Calculated service life 19718km

Travel distance

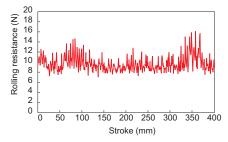
30000km

5000 10000 15000 20000 25000 30000

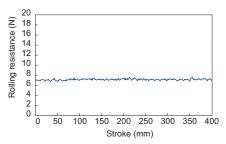
Distance traveled (km)

Grease remains, and no anomaly is observed in

the balls and grease.


Detail view of the ball cage

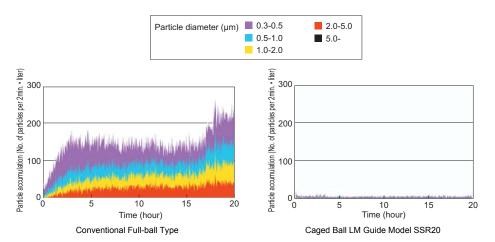
[Smooth Motion]


Rolling Resistance Data

Use of a ball cage allows the balls to be uniformly aligned and prevents a line of balls from meandering as they enter the LM block. This enables smooth and stable motion to be achieved, minimizes fluctuations in rolling resistance, and ensures high accuracy, in any mounting orientation.

Model SHS25LV: Caged Ball LM Guide Model HSR25LR: conventional full-ball type

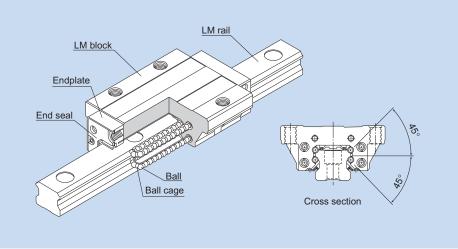
Rolling Resistance Fluctuation Data with HSR25LR (Feeding speed: 10mm/sec)



Rolling Resistance Fluctuation Data with SHS25LV (Feeding speed: 10mm/sec)

[Low dust generation]

Low Dust Generation Data


In addition to friction between balls, metallic contact has also been eliminated by using resin for the through holes. Furthermore, the Caged Ball LM Guide has a high level of grease retention and minimizes fly loss of grease, thus to achieve superbly low dust generation.

SHS

Caged Ball LM Guide Global Standard Size Model SHS

^{*} For the ball cage, see **A**1-106.

Structure and Features	▶ ▶▶ ▲1-113
Types and Features	▶▶▶ △ 1-114
Rated Loads in All Directions	▶▶▶▲1-116
Equivalent Load	▶▶▶▲1-116
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-89
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	S ▶▶▶▲1-309
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-315
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-6
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-12
Tapped-hole LM Rail Type of Model SHS	▶▶▶ B 1-13

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate.

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations. In addition, the LM block can receive a well-balanced preload, increasing the rigidity in the four directions while maintaining a constant, low friction coefficient. With the low sectional height and the high rigidity design of the LM block, this model achieves highly accurate and stable straight motion.

[4-way Equal Load]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

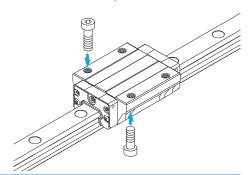
[Self-adjustment Capability]

The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

[Global Standard Size]

SHS is designed to have dimensions almost the same as that of Full Ball LM Guide model HSR, which THK as a pioneer of the linear motion system has developed and is practically a global standard size.

[Low Center of Gravity, High Rigidity]

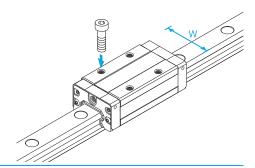

As a result of downsizing the LM rail section, the center of gravity is lowered and the rigidity is increased.

Types and Features

Model SHS-C

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Used in places where the table cannot have through holes for mounting bolts.

Specification Table⇒**B**1-6

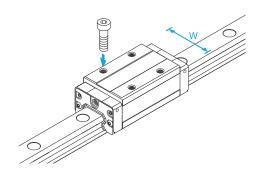


Model SHS-V

With this type, the LM block has a smaller width (W) and tapped holes.

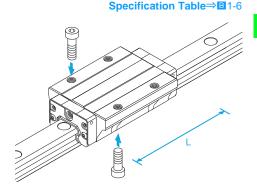
Used in places where the space for table width is limited.

Specification Table⇒B1-8



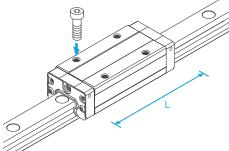
Model SHS-R

The LM block has a smaller width (W) and the mounting holes are tapped.


It succeeds the height dimension of full-ball type LM Guide HSR-R.

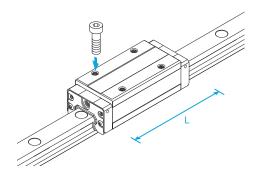
Specification Table⇒**B**1-10

Model SHS-LC


The LM block has the same cross-sectional shape as model SHS-C, but has a longer overall LM block length (L) and a greater rated load.

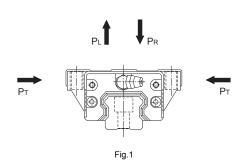
Model SHS-LV

The LM block has the same cross-sectional shape as model SHS-V, but has a longer overall LM block length (L) and a greater rated load.



Model SHS-LR

The LM block has the same cross-sectional shape as model SHS-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-10

Rated Loads in All Directions

Model SHS is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SHS.

Equivalent Load

When the LM block of model SHS receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : \text{Radial load} & (N) \\ P_{L} & : \text{Reverse radial load} & (N) \\ P_{T} & : \text{Lateral load} & (N) \\ \end{array}$

Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see A 1-89.

Accuracy Standards

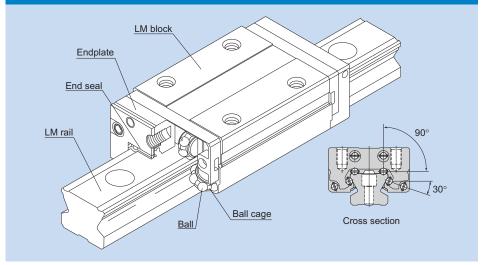
For details, see A 1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-309.

Error Allowance in the Parallelism between Two Rails

For details, see **A**1-315.


Error Allowance in Vertical Level between Two Rails

For details, see A 1-318.

SSR

Caged Ball LM Guide Radial Type Model SSR

^{*} For the ball cage, see A1-106.

Structure and Features	▶▶▶▲1-119
Types and Features	▶▶▶▲1-120
Rated Loads in All Directions	▶ ▶▶ ▲ 1-121
Equivalent Load	▶▶▶ △ 1-121
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-89
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	s ▶▶▶▲1-312
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-315
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-16
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-22
Tapped-hole LM Rail Type of Model SSR	▶▶▶ B 1-23

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate.

Use of the ball cage eliminates friction between balls and increases grease retention, thus to achieve low noise, high speed and long-term maintenance-free operation.

[Compact, Radial Type]

Since it is a compactly designed model that has a low sectional height and a ball contact structure in the radial direction, this model is optimal for horizontal guide units.

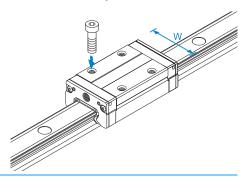
[Superb Planar Running Accuracy]

Use of a ball contact structure that is highly resistant to loads in the radial direction minimizes radial displacement under radial loads and provides stable, highly accurate motion.

[Self-adjustment Capability]

The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

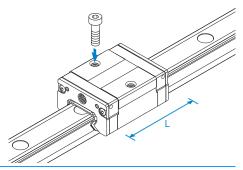
[Stainless Steel Type also Available as Standard]


A stainless steel type with its LM block, LM rail and balls all made of stainless steel, which is superbly corrosion resistant, is also available as standard.

Types and Features

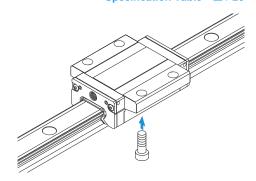
Model SSR-XW

With this type, the LM block has a smaller width (W) and tapped holes.


Specification Table⇒**B**1-16

Model SSR-XV

This type has the same cross-sectional shape as SSR-XW but has a shorter overall LM block length (L).


Specification Table⇒**B**1-18

Model SSR-XTB

Since the LM block can be mounted from the bottom, this type is optimal for applications where through holes for mounting bolts cannot be drilled on the table.

Specification Table⇒**B**1-20

Rated Loads in All Directions

Model SSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

Its basic dynamic load rating is represented by the symbol in the radial direction indicated in Fig.1, and the actual value is provided in the specification table for SSR. The values in the reverse radial and lateral directions are obtained from Table1 below.

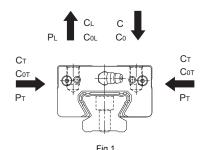


Table1 Rated Load of Model SSR in All Directions

Table I Nated Load of Wodel 331 III All Directions		
Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	Co
Reverse radial direction	C₁=0.50C	C _{0L} =0.50C ₀
Lateral directions	Ст=0.53С	Сот=0.43Со

Equivalent Load

When the LM block of model SSR receives a reverse radial direction and a lateral direction simultaneously, the equivalent load is obtained in the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

P_E : Equivalent load (N)

: Reverse radial direction

: Lateral direction

 P_L : Reverse radial load (N) P_T : Lateral load (N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model SSR

•		
P _E	X	Y
Equivalent load in reverse radial direction	1	1.155
Equivalent load in lateral direction	0.866	1

Service Life

For details, see A1-76.

Radial Clearance Standard

For details, see A1-89.

Accuracy Standards

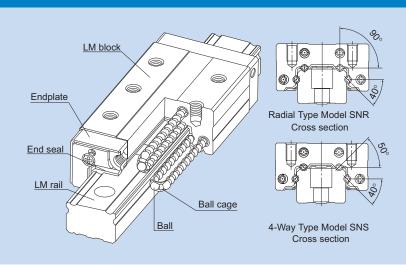
For details, see A1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-312.

Error Allowance in the Parallelism between Two Rails

For details, see A1-315.


Error Allowance in Vertical Level between Two Rails

For details, see A1-318.

SNR/SNS

Caged Ball LM Guide
Ultra-heavy Load Type for Machine Tools Model SNR/SNS

^{*} For the ball cage, see A1-106.

Structure and Features	▶ ▶▶ ▲1-125
Types and Features	▶▶▶ △ 1-126
Rated Loads in All Directions	▶▶▶ A 1-129
Equivalent Load	▶▶▶ A 1-129
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ △ 1-89
Accuracy Standards	▶▶▶ A 1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-309
Error Allowance in the Parallelism between Two Rails ▶▶▶▲	1-315/A1-316
Error Allowance in Vertical Level between Two Rails ▶▶▶▲	1-318/ A 1-319
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-26
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-42

Structure and Features

Balls roll in four precision ground raceways on the LM rail and LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate. Use of the ball cage eliminates friction between balls and increases grease retention, thus to achieve low noise, high speed and long-term maintenance-free operation.

The raceways are ground into deep grooves that have a radius closer to that of the balls than in the conventional design, using special equipment and an extremely precise cutting technique. This design allows high rigidity, high vibration/impact resistance and high damping capacity, all of which are required for machine tools, thus making these models capable of bearing ultra-heavy loads.

* Due to the extremely high rigidity of the LM guides used in SNR/SNS models, the construction is highly tolerant of the effects of mounting face misalignment and installation errors. Where such effects arise, there is a risk of reduced operating life and/or malfunction. Contact THK when considering the use of these products.

[Improved Damping Capacity]

While the machine tool (equipped with NR or NRS) is not cutting a workpiece during operation, the LM Guide travels normally and smoothly. While the machine tool is cutting the workpiece, the cutting force is applied to the LM Guide to increase and the contact area between the balls and the raceway, allowing an appropriate mixture of rolling and sliding motions to be achieved. Accordingly, the friction resistance is increased and the damping capacity is improved.

Since the differential slip during the rolling and sliding motion is insignificant, it causes little wear and does not affect the service life.

[Highly Rational LM Guide]

The excessively large differential slip occurring in a Gothic-arch groove does not happen with these models. They smoothly travel and achieve high positioning accuracy during fast feeding. During the cutting operation, appropriate slip occurs according to the cutting load, the rolling resistance is increased and the damping capacity is increased. Thus, models NR and NRS are highly rational LM Guides.

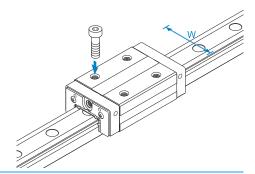
[High Rigidity]

To improve the rigidity of the LM block and the LM rail, which may have reduced overall rigidity of the LM Guide in the reverse radial and lateral directions, THK made full use of FEM to achieve optimal design within the limited dimensional range.

Since THK provides two identically sized models with different characteristics, namely the radial model SNR and four-way model SNS, users can select the model that best suits their specifications.

[Ultra-heavy Load]

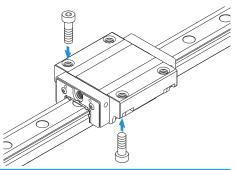
Since the curvature of the raceway is approximated to the ball diameter, the ball contact area under a load is increased and the LM Guide is capable of receiving an ultra-heavy load.


Types and Features

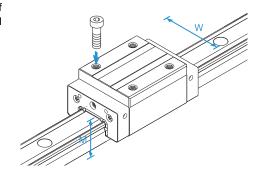
Models SNR-R/SNS-R

With this type, the LM block has a smaller width (W) and tapped holes.

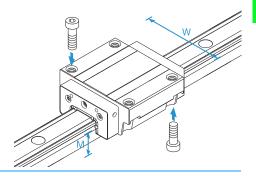
Used in places where the space for table width is limited.


Specification Table⇒B1-26/B1-28

Models SNR-C/SNS-C

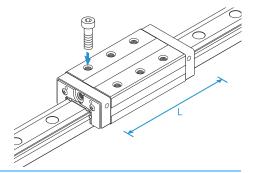

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Can also be used in places where the table cannot have through holes for mounting bolts.

Specification Table⇒B1-30/B1-32


Models SNR-RH/SNS-RH (Build to Order) specification Table⇒ 1-34/101-36

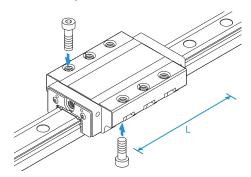
The dimensions are almost the same as that of LM Guide models SHS and HSR, and the LM block has tapped holes.

Models SNR-CH/SNS-CH (Build to Order) specification Table⇒ 1-38/11-40

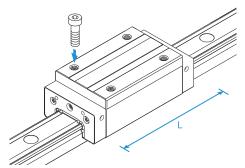

The dimensions are similar to that of LM Guide models SHS and HSR, and the flange of the LM block has tapped holes.

Models SNR-LR/SNS-LR

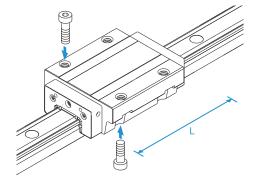
The LM block has the same cross-sectional shape as models SNR-R/SNS-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒■1-26/■1-28

Models SNR-LC/SNS-LC


The LM block has the same cross-sectional shape as models SNR-C/SNS-C, but has a longer overall LM block length (L) and a greater rated load.

Specification Table⇒B1-30/B1-32


Models SNR-LRH/SNS-LRH (Build to Order) specification Table⇒ ■1-34/■1-36

The LM block has the same cross-sectional shape as models SNR-RH/SNS-RH, but has a longer overall LM block length (L) and a greater rated load.

Models SNR-LCH/SNS-LCH (Build to Order) specification Table⇒■1-38/■1-40

The LM block has the same cross-sectional shape as models SNR-CH/SNS-CH, but has a longer overall LM block length (L) and a greater rated load.

Rated Loads in All Directions

Model SNR/SNS is capable of receiving loads in four directions: radial, reverse radial and lateral directions. Their basic dynamic load ratings are represented by the symbols in the radial direction indicated in Fig.1, and the actual values are provided in the specification tables for SNR/SNS. The values in the reverse radial and lateral directions are obtained from Table1 and Table2 below.

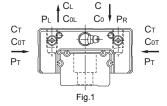


Table1 Basic Load Ratings of Model SNR in All Directions

- · · ·	SNR	
Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direction	CL=0.64C	C _{0L} =0.64C ₀
Lateral directions	C₁=0.47C	C _{0T} =0.38C ₀

Table2 Basic Load Ratings of Model SNS in All Directions

	SNS	
Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C₀
Reverse radial direction	C₁=0.84C	C _{0L} =0.84C ₀
Lateral directions	C _⊤ =0.84C	C _{0T} =0.84C ₀

Equivalent Load

When the LM block of model SNR receives a reverse radial load and a lateral load simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

P_E: Equivalent load (N): Reverse radial direction

: Lateral direction

P_L : Reverse radial load (N)
P_T : Lateral load (N)

X, Y: Equivalent factor (see Table3)

Table3 Equivalent Factor of Model SNR

P₅	X	Υ
Equivalent load in reverse radial direction	1	1.678
Equivalent load in lateral direction	0.596	1

When the LM block of model SNS receives a radial load and a lateral load, or a reverse radial load and a lateral load, simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{X} \cdot \mathbf{P}_{R} \ (\mathbf{P}_{L}) + \mathbf{Y} \cdot \mathbf{P}_{T}$

P_E: Equivalent load (N): Radial direction

: Reverse radial direction : Lateral direction

 P_R : Radial load (N) P_L : Reverse radial load (N)

P_⊤ : Lateral load (N)

X, Y: Equivalent factor

(see Table4 and Table5)

Table4 Equivalent Factor of Model SNS (When radial and lateral loads are applied)

P⊧	X	Υ
Equivalent load in the radial direction	1	0.935
Equivalent load in lateral direction	1.07	1

Table5 Equivalent Factor of Model SNS (When reverse radial load and lateral load are applied)

PE	X	Y
Equivalent load in reverse radial direction	1	1.02
Equivalent load in lateral direction	0.986	1

Service Life

For details, see A1-76.

Radial Clearance Standard

For details, see A1-89.

Accuracy Standards

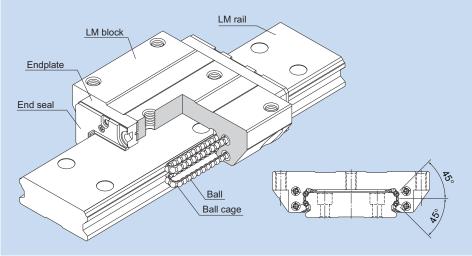
For details, see A1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-309.

Error Allowance in the Parallelism between Two Rails

For details, **A**1-315 and **A**1-316.


Error Allowance in Vertical Level between Two Rails

For details, **A**1-318 and **A**1-319.

SHW

Caged Ball LM Guide Wide Rail Model SHW

^{*} For the ball cage, see A1-106.

Structure and Features	▶ ▶▶ ▲1-133
Types and Features	▶▶▶▲1-134
Rated Loads in All Directions	▶▶▶▲1-134
Equivalent Load	▶▶▶▲1-135
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-89
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	S ▶▶▶ ▲1-312
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-316
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-319
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-44
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-48

Structure and Features

A wide and highly rigid LM Guide that uses ball cages to achieve low noise, long-term maintenancefree operation and high speed.

[Wide, Low Center of Gravity]

Model SHW, which has a wide LM rail and a low center of gravity, is optimal for locations requiring space saving and large Mo moment rigidity.

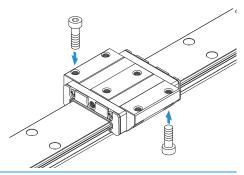
[4-way Equal Load]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

[Self-adjustment Capability]

The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

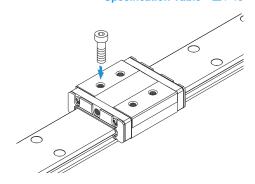
[Low Dust Generation]


Use of ball cages eliminates friction between balls and retains lubricant, thus achieving low dust generation.

Types and Features

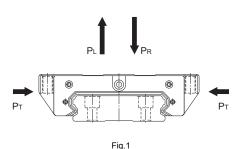
Model SHW-CA

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom.


Specification Table⇒**B**1-44

Model SHW-CR

The LM block has tapped holes.


Specification Table⇒**B**1-46

Rated Loads in All Directions

Model SHW is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SHW.

Equivalent Load

When the LM block of model SHW receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$$P_E = P_R (P_L) + P_T$$

 P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{R} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see A 1-89.

Accuracy Standards

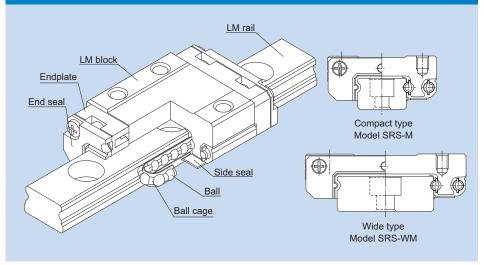
For details, see A1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A1-312.

Error Allowance in the Parallelism between Two Rails

For details.see A 1-316.


Error Allowance in Vertical Level between Two Rails

For details, see A 1-319.

SRS

Caged Ball LM Guide Miniature Type Model SRS

^{*} For the ball cage, see **A**1-106.

Structure and Features	▶ ▶▶ ▲1-137
Types and Features	▶▶▶▲1-138
Rated Loads in All Directions	▶▶▶▲1-140
Equivalent Load	▶▶▶▲1-140
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ ▲1-89
Accuracy Standards	▶▶▶▲1-101
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-314
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-316
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-319
Flatness of the LM Rail and the LM Block Mounting Surface	▶▶▶ △ 1-141
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-50
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ B 1-56

Structure and Features

Caged Ball LM Guide model SRS has a structure where two raceways are incorporated into the compact body, enabling the model to receive loads in all directions, and to be used in locations where a moment is applied with a single rail. In addition, use of ball cages eliminates friction between balls, thus achieving high speed, low noise, acceptable running sound, long service life, and long-term maintenance-free operation.

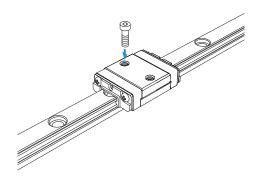
[Low Dust Generation]

Use of ball cages eliminates friction between balls and retains lubricant, thus achieving low dust generation. In addition, the LM block and LM rail use stainless steel, which is highly resistant to corrosion.

[Compact]

Since SRS has a compact structure where the rail cross section is designed to be low and that contains only two rows of balls, it can be installed in space-saving locations.

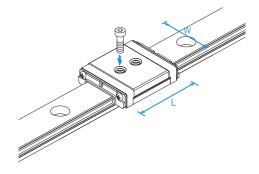
[Lightweight]


Since part of the LM block (e.g., around the ball relief hole) is made of resin and formed through insert molding, SRS is a lightweight, low inertia type of LM Guide.

Types and Features

Model SRS5M

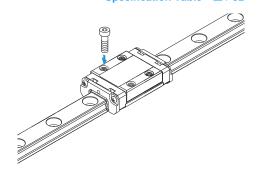
SRS5 is the smallest caged ball LM guide and its mounting dimensions are interchangeable with the conventional RSR5 model.


Specification Table⇒**B**1-50

Model SRS5WM

This model has a larger overall LM block length (L), width (W), rated load and permissible moment than model SRS5M. Mounting dimensions are interchangeable with RSR5WM.

Specification Table⇒B1-50

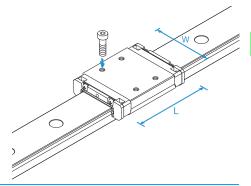


Model SRS-M

A standard type of SRS.

Note) In addition to model SRS-M, a full-ball type without ball cage is also available.If desiring this type, indicate type "SRS-G" when placing an order.However, since SRS-G does not have a ball cage, its dynamic load rating is smaller than SRS-M. See the table of basic load ratings for SRS-G on 1-1-53 for details.

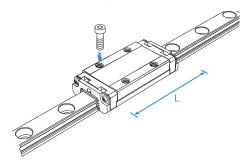
Specification Table⇒**B**1-52



Model SRS-WM

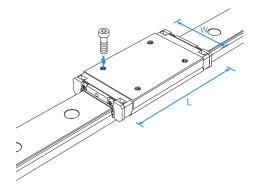
Has a longer overall LM block length (L), a greater width and a larger rated load and permissible moment than SRS-M.

Note) In addition to model SRS-WM, a full-ball type without ball cage is also available. If desiring this type, indicate type "SRS-G" when placing an order. However, since SRS-G does not have a ball cage, its dynamic load rating is smaller than SRS-WM. See the table of basic load ratings for SRS-G on 191-55 for details.


Specification Table⇒**B**1-54

Model SRS-N

Compared with modelSRS-M, it has a longer total LM block length (L) and a higher load rating and permissible moment.


Specification Table⇒B1-52

Model SRS-WN

Compared with model SRS-WM, it has a longer total LM block length (L) and a higher load rating and permissible moment.

Specification Table⇒**B**1-54

Rated Loads in All Directions

Model SRS is capable of receiving loads in four directions: radial, reverse radial and lateral directions

Their basic dynamic load ratings are represented by the symbols in the radial direction indicated in Fig.1, and the actual values are provided in the specification table for SRS. The values in the reverse radial and lateral directions are obtained from Table1 below.

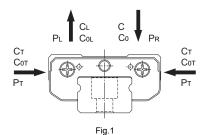


Table1 Rated Loads of Model SRS in All Directions

Direction	Basic dynamic load rating	Basic static load rating	
Radial direction	С	C C ₀	
Reverse radial direction	C _L =C	C _{0L} =C ₀	
Lateral directions (5M/5WM/7M/ 7WM/9M/9N/ 9WM/9WN/20M)	C₁=1.19C	Сот=1.19Со	
Lateral directions (12M/12N/12WM/ 12WN/15M/15N/ 15WM/15WN/25M)	C _⊤ =C	C _{0T} =C ₀	

Equivalent Load

When the LM block of model SRS receives a reverse radial load and a lateral load simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

P _E : Equivalent load		(N)
	· Radial direction	

: Reverse radial direction

 $\begin{tabular}{ll} : Lateral \ direction \\ P_{\mbox{\tiny R}} & : Radial \ load \end{tabular} \begin{tabular}{ll} (N) \end{tabular}$

 P_L : Reverse radial load (N) P_T : Lateral load (N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model SRS

Equivalent Load P _E	Model No.	Х	Υ
Radial and reverse radial direction	5M/5WM/7M/ 7WM/9M/9N/ 9WM/9WN/20M	1	0.839
	12M/12N/12WM/ 12WN/15M/15N/ 15WM/15WN/25M	1	1
Lateral	5M/5WM/7M/ 7WM/9M/9N/ 9WM/9WN/20M	1.192	1
directions	12M/12N/12WM/ 12WN/15M/15N/ 15WM/15WN/25M	1	1

Service Life

For details, see A1-76.

Radial Clearance Standard

For details, see A1-89.

Accuracy Standards

For details.see A1-101.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A1-314.

Error Allowance in the Parallelism between Two Rails

For details, see A 1-316.

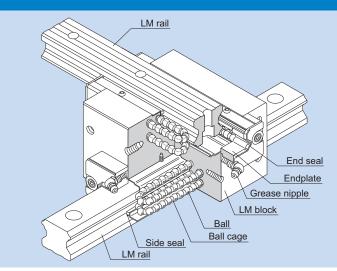
Error Allowance in Vertical Level between Two Rails

For details, see A 1-319.

Flatness of the LM Rail and the LM Block Mounting Surface

The values in Table3 apply when the clearance is a normal clearance. If the clearance is C1 clearance and two rails are used in combination, we recommend using 50% or less of the value in the table.

Note) Since SRS has Gothic-arch grooves, any accuracy error in the mounting surface may negatively affect the operation. Therefore, we recommend using SRS on a highly accurate mounting surface.


Table3 Flatness of the LM Rail and the LM Block Mounting Surface Unit: mm

Model No.	Flatness error
SRS 5M	0.015/200
SRS 5WM	0.015/200
SRS 7M	0.025/200
SRS 7WM	0.025/200
SRS 9M/N	0.035/200
SRS 9WM/WN	0.035/200
SRS 12M/N	0.050/200
SRS 12WM/WN	0.050/200
SRS 15M/N	0.060/200
SRS 15WM/WN	0.060/200
SRS 20M	0.070/200
SRS 25M	0.070/200

SCR

Caged Ball LM Guide Cross LM Guide Model SCR

^{*} For the ball cage, see **A**1-106.

Structure and Features	▶▶▶▲1-143	
Types and Features	▶▶▶ A 1-144	
Rated Loads in All Directions	▶▶▶▲1-145	
Equivalent Load	▶▶▶▲1-145	
Service Life	▶ ▶▶ ▲1-76	
Radial Clearance Standard	▶ ▶▶ ▲1-89	
Accuracy Standards	▶▶▶ △ 1-98	
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-309	
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-58	
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-60	
Tapped-hole LM Rail Type of Model SCR	▶▶▶ B 1-61	

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and ball cages and endplates incorporated in the LM block allow the balls to circulate.

This model is an integral type of Caged Ball LM Guide that squares an internal structure similar to model SHS, which has a proven track record and is highly reliable, with another and uses two LM rails in combination. Since an orthogonal LM system can be achieved with model SCR alone, a conventionally required saddle is no longer necessary, the structure for X-Y motion can be simplified and the whole system can be downsized.

[4-way Equal Load]

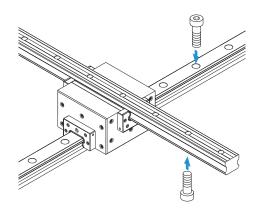
Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

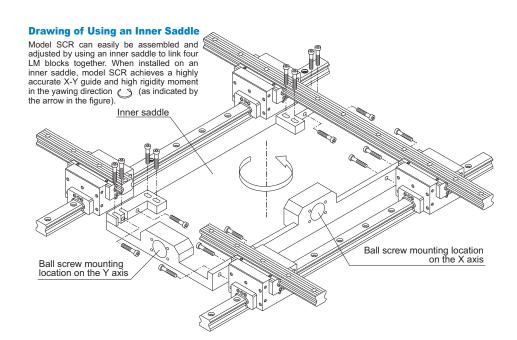
[High Rigidity]

Since balls are arranged in four rows in a well-balanced manner, this model is stiff against a moment, and smooth straight motion is ensured even a preload is applied to increase the rigidity.

Since the rigidity of the LM block is higher than that of a combination of two LM blocks of the conventional type secured together back-to-back with bolts, this model is optimal for building an X-Y table that requires a high rigidity.

[Compact]

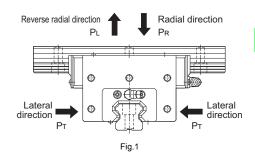

This model is an integral type of Caged Ball LM Guide that squares an internal structure similar to model SHS, which has a proven track record and is highly reliable, with another and uses two LM rails in combination. Since an orthogonal LM Guide can be achieved with model SCR alone, a conventionally required saddle is no longer necessary, the structure for X-Y motion can be simplified and the whole system can be downsized.


Types and Features

Model SCR

Specification Table⇒**B**1-58

This model is a standard type.



Rated Loads in All Directions

Model SCR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are defined with a LM rail and a LM block, and uniform in the four directions (radial, reverse radial and lateral directions). Their actual values are provided in the specification table for SCR.

Equivalent Load

When the LM block of model SCR receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

 P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\scriptscriptstyle R} & : \mbox{ Radial load} & (\mbox{N}) \\ P_{\scriptscriptstyle L} & : \mbox{ Reverse radial load} & (\mbox{N}) \\ P_{\scriptscriptstyle T} & : \mbox{ Lateral load} & (\mbox{N}) \end{array}$

Service Life

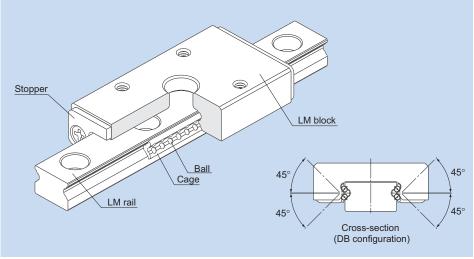
For details.see A 1-76.

Radial Clearance Standard

For details, see A 1-89.

Accuracy Standards

For details, see A1-98.


Shoulder Height of the Mounting Base and the Corner Radius

For details, see A 1-309.

EPF

Caged Ball LM Guides Finite stroke Model EPF

^{*} For the ball cage, see **A**1-106.

Structure and Features	▶ ▶▶ ▲1-147
Types and Features	▶ ▶▶ ▲1-148
Rated Loads in All Directions	▶▶▶ △ 1-149
Equivalent Load	▶▶▶ A 1-149
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ A 1-91
Accuracy Standards	▶▶▶▲1-104
Shoulder Height of the Mounting Base and the Corner Radius	s ▶▶▶ A 1-310
Accuracy of the Mounting Surface	▶▶▶▲1-150
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-64
Standard Length of the LM Rail	▶▶▶ B 1-66

Structure and Features

Balls are held in cages with spherical ball holders and the balls roll in four rows of circular-arc grooves in raceways on precision-ground LM rails and LM blocks.

[Smooth motion]

Because a finite stroke is used, balls do not circulate and movement is smooth even with preloading. Also, because variations in rolling resistance are small, this model is ideal for locations where smooth movement is required with a short stroke.

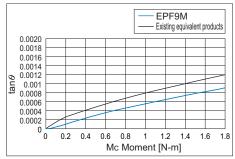
[High Rigidity]

Because model EPF uses a DB construction featuring 4 sets of circular-arc grooves, it offers particularly high rigidity with respect to moment in the Mc direction. This makes it ideal for locations where Mc moment is applied with one rail.

[Miniature Type]

Because the mounting method is compatible with the Miniature LM Guide Model RSR-N, the models are dimensionally interchangeable.

[4-way Equal Load]


Each row of balls is configured at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the all directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

[Ball cage technology application 1]

Because the cage is formed out of plastic resin. there is no metal contact between the cage and the balls, providing excellent noise characteristics, low dust emissions and long product life.

[Ball cage technology application 2]

Forming the cage in a spherical shape out of plastic resin allows lubricant to be held in grease pockets, enabling long periods of maintenancefree operation.

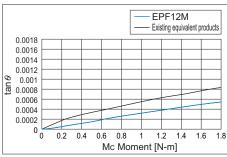
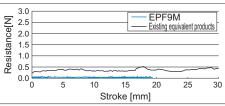



Fig.1 Comparison of Mc moment test data

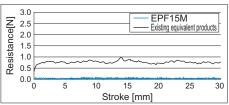
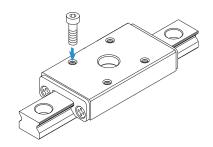



Fig.2 Comparison of rolling resistance test data

Types and Features

Model EPF

Specification Table⇒**B**1-64

Rated Loads in All Directions

Model EPF can bear loads in the radial, reverse radial and lateral directions.

The basic load ratings are uniform in all directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for EPF.

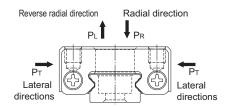


Fig.3

Equivalent Load

When the LM block of model EPF receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R(P_L) + P_T$

 P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N)

PL: Reverse radial load (N)

 P_{T} : Lateral load (N)

Service Life

For details, see A1-76.

Radial Clearance Standard

For details, see **A**1-91.

Accuracy Standards

For details, see A1-104.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A1-310.

Accuracy of the Mounting Surface

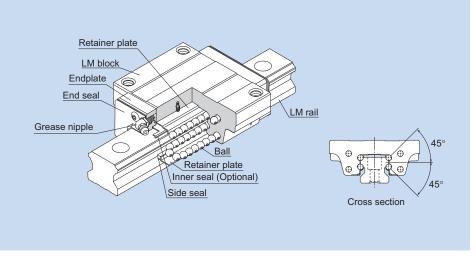
If there is not sufficient precision in the LM rail and LM block mounting surfaces, the product may not function to its full potential. Table 1 Machine to values no higher than those shown in... (Recommended value: 70% of Table 1)

Table1 Flatness of the LM Rail and the LM Block Mounting Surface

Unit: mm

Model No.	Flatness error
EPF 7M, 9M	0.015/200
EPF 12M	0.025/200
EPF 15M	0.035/200

Note) It is recommended that highly rigid materials such as iron or cast metal be used as the mounting material. If a material with poor rigidity, such as aluminum, is used, unforeseen loading may be applied to the product. In such situations, contact THK.


Accuracy of Each Model

Finite stroke Model EPF

LM Guide

HSR

LM Guide Global Standard Size Model HSR

Structure and Features	▶ ▶▶ ▲1-153
Types	▶▶▶▲1-154
Rated Loads in All Directions	▶▶▶▲1-158
Equivalent Load	▶▶▶▲1-158
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ ▲1-90
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-310
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-315
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-68
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-88
Tapped-hole LM Rail Type of Model HSR	▶▶▶ B 1-89
Stopper	▶▶▶ B 1-90

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Since retainer plates hold the balls, they do not fall off even if the LM rail is pulled out (except models HSR 8, 10 and 12).

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations. In addition, the LM block can receive a well-balanced preload, increasing the rigidity in the four directions while maintaining a constant, low friction coefficient. With the low sectional height and the high rigidity design of the LM block, this model achieves highly accurate and stable straight motion.

[4-way Equal Load]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations and in extensive applications.

[High Rigidity Type]

Since balls are arranged in four rows in a well-balanced manner, a large preload can be applied and the rigidity in four directions can easily be increased.

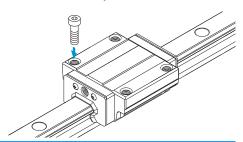
[Self-adjustment Capability]

The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

[High Durability]

Even under a preload or excessive biased load, differential slip of balls does not occur. As a result, smooth motion, high wear resistance, and long-term maintenance of accuracy are achieved.

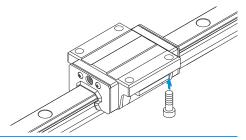
[Stainless Steel Type also Available]


A special type which LM block, LM rail and balls are made of stainless steel is also available.

Types

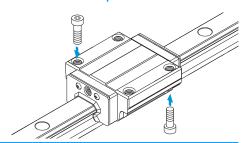
Model HSR-A

The flange of its LM block has tapped holes.


Specification Table⇒**B**1-68

Model HSR-B

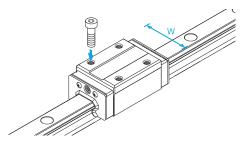
The flange of the LM block has through holes. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒**B**1-70

Model HSR-C Grade Ct

The flange of its LM block has tapped holes. Can be mounted from the top or the bottom.

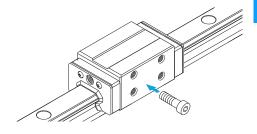
Specification Table⇒**B**1-72



Model HSR-R

Having a smaller LM block width (W) and tapped holes, this model is optimal for compact design.

Low-priced LM rails and LM blocks are individually stocked. We also have Ct grade model HSR-R available with a short delivery time.


Specification Table⇒**B**1-76

Specification Table⇒**B**1-80

Model HSR-YR

When using two units of LM Guide facing each other, the previous model required much time in machining the table and had difficulty achieving the desired accuracy and adjusting the clearance. Since model HSR-YR has tapped holes on the side of the LM block, a simpler structure is gained and reduced man-hour and increase in accuracy can be achieved.

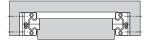


Fig.1 Conventional Structure

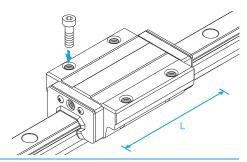
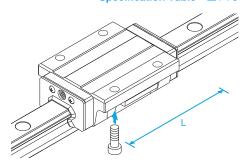


Fig.2 Mounting Structure for Model HSR-YR

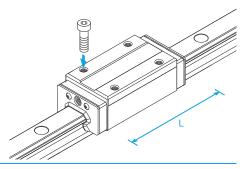
Model HSR-LA

The LM block has the same cross-sectional shape as model HSR-A, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-68

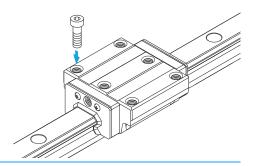
Model HSR-LB

The LM block has the same cross-sectional shape as model HSR-B, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-70

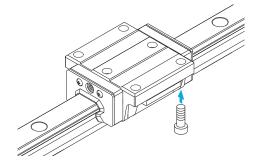
Model HSR-LR

The LM block has the same cross-sectional shape as model HSR-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-76

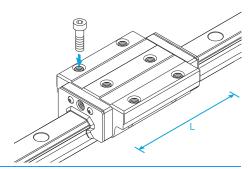
Model HSR-CA

Has six tapped holes on the LM block.


Specification Table⇒**B**1-82

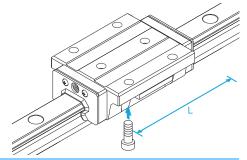
Model HSR-CB

The LM block has six through holes. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒**B**1-84

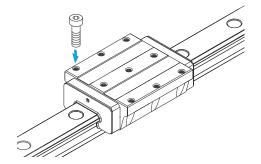
Model HSR-HA

The LM block has the same cross-sectional shape as model HSR-CA, but has a longer overall LM block length (L) and a greater rated load.

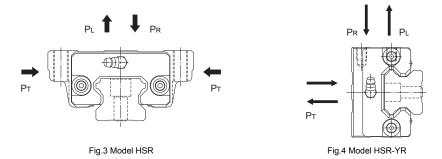

Specification Table⇒**■**1-82

Model HSR-HB

The LM block has the same cross sectional shape as model HSR-CB, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-84

Models HSR 100/120/150 HA/HB/HR


Large types of model HSR that can be used in large-scale machine tools and building structures.

Specification Table⇒**B**1-86

Rated Loads in All Directions

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HSR.

Equivalent Load

When the LM block of model HSR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{P}_{R} \left(\mathbf{P}_{L} \right) + \mathbf{P}_{T}$			
P_{E}	: Equivalent load	(N)	
	: Radial direction		
	: Reverse radial direction		
	: Lateral direction		
P_{R}	: Radial load	(N)	
P_{Γ}	: Reverse radial load	(N)	
P_T	: Lateral load	(N)	

Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see A 1-90.

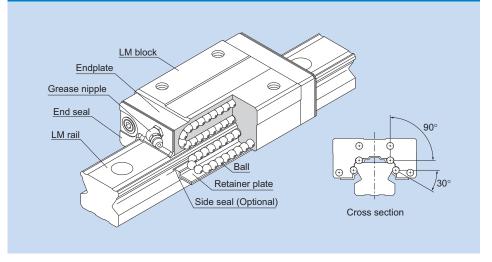
Accuracy Standards

For details, see A 1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-310.

Error Allowance in the Parallelism between Two Rails


For details, see **A**1-315.

Error Allowance in Vertical Level between Two Rails

For details, see A 1-318.

SR

LM Guide Radial Type Model SR

Structure and Features	▶ ▶▶ ▲1-161
Types and Features	▶▶▶▲1-162
Characteristics of Model SR	▶ ▶▶ ▲1-164
Rated Loads in All Directions	▶ ▶▶ ▲1-166
Equivalent Load	▶▶▶ △ 1-166
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ ▲1-90
Accuracy Standards	▶▶▶ △ 1-95
Shoulder Height of the Mounting Base and the Corner Radius	S ▶▶▶ A 1-308
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-315
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-92
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-96
Tapped-hole LM Rail Type of Model SR	▶▶▶ B 1-97

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since a retainer plate holds the balls, they will not fall off even if the LM block is removed from the LM rail. With the low sectional height and the high rigidity design of the LM block, this model achieves highly accurate and stable straight motion.

[Compact, Heavy Load]

Since it is a compact designed model that has a low sectional height and a ball contact structure rigid in the radial direction, this model is optimal for horizontal guide units.

[Mounting accuracy can easily be achieved]

Since this model is a self-adjusting type capable of easily absorbing an accuracy error in parallelism and level between two rails, highly accurate and smooth motion can be achieved.

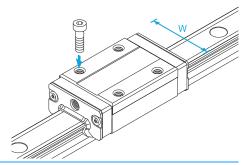
[Low Noise]

The endplate installed at each end of the LM block is designed to ensure the smooth and low-noise circulation of the balls at the turning areas.

[High Durability]

Even under a preload or excessive biased load, differential slip of balls is minimal. As a result, high wear resistance and long-term maintenance of accuracy are achieved.

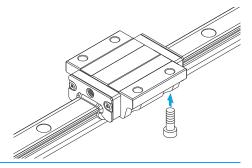
[Stainless Steel Type also Available]


A special type which LM block, LM rail and balls are made of stainless steel is also available.

Types and Features

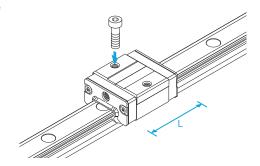
Model SR-W

With this type, the LM block has a smaller width (W) and tapped holes.


Specification Table⇒**B**1-92

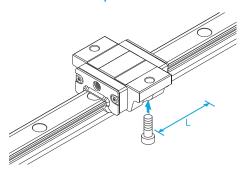
Model SR-TB

The LM block has the same height as model SR-W and can be mounted from the bottom.


Specification Table⇒**B**1-94

Model SR-V

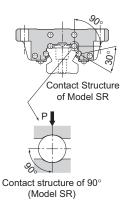
A space-saving type whose LM block has the same cross-sectional shape as model SR-W, but has a smaller overall LM block length (L).

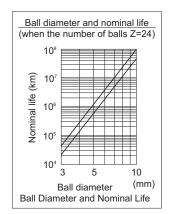

Specification Table⇒**B**1-92

Model SR-SB

A space-saving type whose LM block has the same cross-sectional shape as model SR-TB, but has a smaller overall LM block length (L).

Specification Table⇒**B**1-94




Characteristics of Model SR

When compared to models having a contact angle of 45°, model SR shows excellent characteristics as indicated below. Using these characteristics, you can design and manufacture highly accurate and highly rigid machines or equipment.

Difference in Rated Load and Service Life

Since SR has a contact angle of 90°, its rated load and service life are different from those with a contact angle of 45°. When comparing model SR with a model that has a contact angle of 45° and when the same radial load is applied to the two models with the same ball diameter as shown in the figure below, the load applied to SR is 70% of the other model. As a result, the service life of SR is more than twice that of the other model.

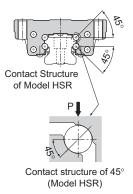
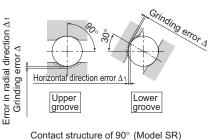



Fig.1

Difference in Accuracy

If a machining error (grinding error) occurs in the LM rail or LM block, it will affect the running accuracy. Assuming that there is a machining error of Δ on the raceway, it results in an error in the radial direction, and the error with the contact angle of 45° (model HSR) is 1.4 times greater than that of the contact angle of 90° (model SR). As for the machining error resulting in horizontal direction error, the error with the contact angle of 45° is 1.22 times greater than the contact angle of 30° .

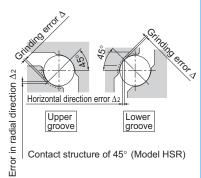


Fig.2 Machining Error and Accuracy

Difference in Rigidity

The 90° contact angle adopted by model SR has a difference with the 45° contact angle also in rigidity. When the same radial load "P" is applied, the displacement in the radial direction with model SR is only 56% of that with the contact angle of 45°. Accordingly, where high rigidity in the radial direction is required, model SR is more advantageous. The figure below shows the difference in radial load and displacement.

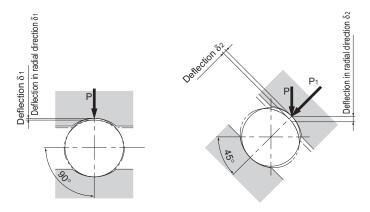


Fig.3 Deflection under a Radial Load

Load and deflection when contact angles are not the same (Da=6.35mm)

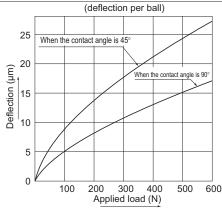


Fig.4 Radial Load and Deflection

Conclusion

Model SR with this type of 90° contact construction are ideal for locations where the load applied is mostly radial, locations where radial rigidity is required, and locations where accurate motion is demanded in the up, down, left and right directions.

However, if the reverse radial load, the lateral load or the moment is large, we recommend model HSR, which has a contact angle of 45° (4-way equal load).

Rated Loads in All Directions

Model SR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings indicate the values in the radial directions in Fig.5, and their actual values are provided in the specification table for SR. The values in the reverse radial and lateral directions are obtained from Table1 below.

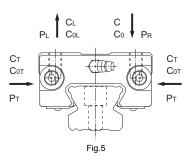


Table1 Rated Loads in All Directions with Model SR

Model No.	Direction	Basic dynamic load rating	Basic static load rating
	Radial direction	С	Co
SR 15 to 70	Reverse radial direction	CL=0.62C	C ₀ L=0.50C ₀
	Lateral directions	C₁=0.56C	Сот=0.43Со
	Radial direction	С	Co
SR 85 to 150	Reverse radial direction	CL=0.78C	C ₀ L=0.71C ₀
	Lateral directions	C₁=0.48C	Сот=0.35Со

Equivalent Load

When the LM block of model SR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

 P_E : Equivalent load (N)

: Reverse radial direction

: Lateral direction

 P_L : Reverse radial load (N) P_T : Lateral load (N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model SR

Model No.		PE	Х	Υ
	SR	Equivalent load in reverse radial direction	1	1.155
	15 to 70	Equivalent load in lateral direction	0.866	1
	SR	Equivalent load in reverse radial direction	1	2
	85 to 150	Equivalent load in lateral direction	0.5	1

Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see A 1-90.

Accuracy Standards

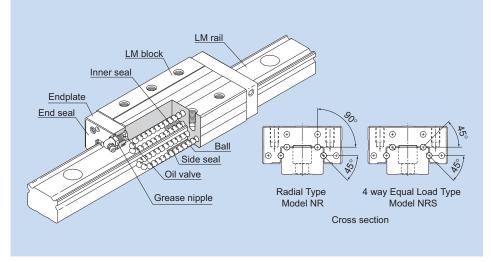
For details, see A1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-308.

Error Allowance in the Parallelism between Two Rails

For details, see **A**1-315.


Error Allowance in Vertical Level between Two Rails

For details, see A 1-318.

NR/NRS

LM Guide

Ultra-heavy Load Type for Machine Tools Model NR/NRS

Structure and Features	▶ ▶▶ ▲1-169
Types and Features	▶ ▶▶ ▲1-170
Characteristics of Models NR and NRS	▶ ▶▶ ▲1-172
Rated Loads in All Directions	▶ ▶▶ ▲1-174
Equivalent Load	▶ ▶▶ ▲1-174
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-89
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-309
Error Allowance in the Parallelism between Two Rails ▶▶▶▲	1-315/A1-316
Error Allowance in Vertical Level between Two Rails ▶▶▶▲	1-318/A1-319
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-100
Standard Length and Maximum Length of the LM Rail	▶ ▶▶■ 1-112

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. The raceways are cut into deep grooves that have a radius closer to that of the balls than in the conventional design, using special equipment and an extremely precise cutting technique. This design allows high rigidity, high vibration/impact resistance and high damping capacity, all of which are required for machine tools, thus making these models capable of bearing ultra-heavy loads.

* Due to the extremely high rigidity of the LM guides used in models NR/NRS, the construction does not easily absorb the effects of mounting surface misalignment and installation errors. Where such effects arise, there is a risk of reduced operating life and/or malfunction. Contact THK when considering the use of these products.

[Improved Damping Capacity]

While the machine tool (equipped with NR or NRS) is not cutting a workpiece during operation, the LM Guide travels normally and smoothly. While the machine tool is cutting the workpiece, the cutting force is applied to the LM Guide to increase and the contact area between the balls and the raceway, allowing an appropriate mixture of rolling and sliding motions to be achieved. Accordingly, the friction resistance is increased and the damping capacity is improved.

Since the absolute slip during the rolling and sliding motion is insignificant, it causes little wear and does not affect the service life.

[Highly Rational LM Guide]

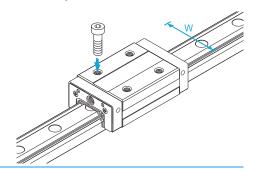
The excessively large differential slip occurring in a Gothic-arch groove does not happen with these models. They smoothly travel and achieve high positioning accuracy during fast feeding. During the cutting operation, appropriate slip occurs according to the cutting load, the rolling resistance is increased and the damping capacity is increased. Thus, models NR and NRS are highly rational LM Guides.

[High Rigidity]

To increase the rigidity of the LM block and the LM rail, which may deteriorate the overall rigidity of the LM Guide in the reverse radial and lateral directions, THK made full use of FEM to achieve optimal design within the limited dimensional range.

THK provides two identically sized models with different characteristics, namely the radial model NR and four-way equal-load model NRS, users can select the model that best suits their specifications.

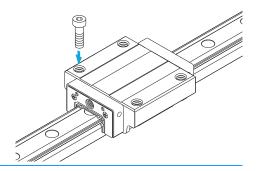
[Ultra-heavy Load]


Since the curvature of the raceway is approximated to the ball diameter, the ball contact area under a load is increased and the LM Guide is capable of receiving an ultra-heavy load.

Types and Features

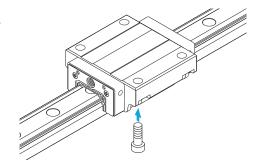
Models NR-R/NRS-R

With this type, the LM block has a smaller width (W) and tapped holes. Used in places where the space for table width is limited.

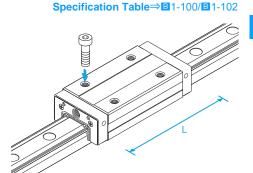

Specification Table⇒B1-100/B1-102

Models NR-A/NRS-A

The flange of its LM block has tapped holes.

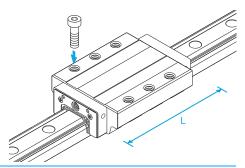

Specification Table⇒B1-104/B1-106

Models NR-B/NRS-B


The flange of the LM block has through holes. Used in places where the table cannot have through holes for mounting bolts.

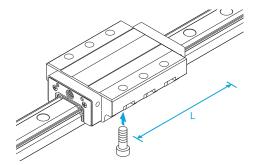
Specification Table⇒B1-108/B1-110

Models NR-LR/NRS-LR


The LM block has the same cross-sectional shape as models NR-R/NRS-R, but has a longer overall LM block length (L) and a greater rated load.

Models NR-LA/NRS-LA

The LM block has the same cross-sectional shape as models NR-A/NRS-A, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B1-104/B1-106

Models NR-LB/NRS-LB

The LM block has the same cross-sectional shape as models NR-B/NRS-B, but has a longer overall LM block length (L) and a greater rated load.

Specification Table⇒B1-108/B1-110

Characteristics of Models NR and NRS

[Increased Rigidity in Major Load Directions]

The structure with a contact angle of 90° used in model NR differs from that with a 45° contact angle also in rigidity. Under the same radial load P, the displacement in the radial direction with model NR having a contact angle of 90° is 44% less than the 45° .

Fig.2 shows the difference in radial load and displacement. Accordingly, where high rigidity in the radial direction is required, model NR is more advantageous.

[Increased Rigidity in the Lateral and Reverseradial Directions]

Since with LM Guide model NR, the distance "H" between the rail bottom and the lower-groove balls (balls receiving lateral loads) is short, the ratio between the rail width "W" and the distance "H" is small, and the distance "T" between the LM rail mounting bolt seat and the LM rail bottom is short. Accordingly, the deformation of the LM rail under a lateral load is minimal, and the rigidity in the lateral directions is increased.

Since the dimension "B" of the LM block is short and the thickness "A" is large, the lateral extension of the LM block under a reverse radial or lateral load is minimized. This structure allows the rigidity in the reverse radial direction to be increased.

In comparison to the old model with the same model number, the ball diameter of NR is smaller and the number of effective balls is approximately 1.3 times greater, thus increasing the static rigidity.

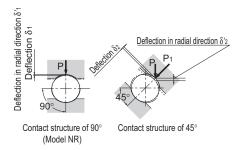


Fig.1 Deflection under a Radial Load

Load and deflection when contact angles are not the same (Da=6.35mm)

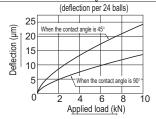


Fig.2 Radial Load and Deflection (normal clearance, no preload)

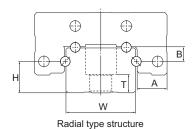


Fig.3 Cross Section of Model NR

As shown in Fig.4, the contact area and the internal stress of a ball greatly vary depending on the shape of contact surface.

With the conventional roller guide, the effective length is shorter than the apparent value due to the retention of the rollers. Additionally, the change of stress distribution in the contact section caused by a mounting error significantly affects the differential slip.

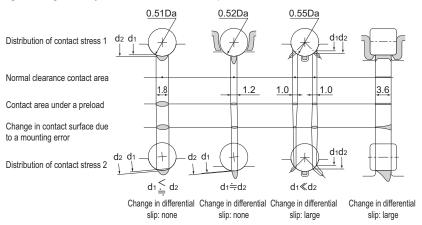


Fig.4 Comparison of Contact Surface (ϕ 6.350 ball, ϕ 6 x 6 ℓ roller)

Rated Loads in All Directions

Models NR/NRS are capable of receiving loads in all four directions: radial, reverse radial and lateral directions.

The basic load ratings of model NR are indicated by the values in the radial directions in Fig.5, and their actual values are provided in the specification table for NR/NRS. The values in the reverse radial and lateral directions are obtained from table 1 below.

The basic load ratings of model NRS are equal in all the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for NR/NRS.

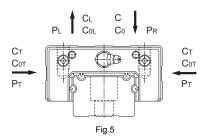


Table1 Rated Loads in All Directions with Model NR

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direction	C _L =0.78C	C _{0L} =0.71C ₀
Lateral directions	C _⊤ =0.48C	Сот=0.45Со

Equivalent Load

When the LM block of model NR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

 P_E : Equivalent load (N)

: Reverse radial direction

· Lateral direction

 P_{L} : Reverse radial load (N)

 P_T : Lateral load (N) X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model NR

P₅	Х	Y
Equivalent load in reverse radial direction	1	2
Equivalent load in lateral direction	0.5	1

When the LM block of model NRS receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $P_{\mbox{\tiny R}}$: Radial load (N) $P_{\mbox{\tiny L}}$: Reverse radial load (N)

 P_{T} : Lateral load (N)

Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see A 1-89.

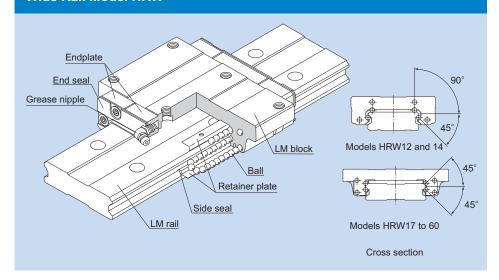
Accuracy Standards

For details, see A 1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-309.

Error Allowance in the Parallelism between Two Rails


For details, **A**1-315 and **A**1-316.

Error Allowance in Vertical Level between Two Rails

For details, **A**1-318 and **A**1-319.

HRW

LM Guide Wide Rail Model HRW

Structure and Features	▶ ▶▶ ▲1-177
Types and Features	▶ ▶▶ ▲1-178
Rated Loads in All Directions	▶ ▶▶ ▲1-179
Equivalent Load	▶ ▶▶ ▲ 1-179
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-90
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶ ▶▶ ▲1-312
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-316
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-319
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-114
Standard Length and Maximum Length of the LM Rail	▶ ▶▶■ 1-118
Stopper	▶ ▶▶■ 1-118

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Since retainer plates hold the balls, they do not fall off even if the LM rail is pulled out. (except models HRW 12 and 14LR).

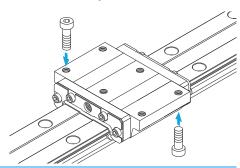
Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations. In addition, the LM block can receive a well-balanced preload, increasing the rigidity in four directions while maintaining a constant, low friction coefficient. In a low center of gravity structure with a large rail width and a low overall height, this model can be used in places where space saving is required or high rigidity against a moment is required even in a single axis configuration.

[Compact, Heavy Load]

Since the number of effective balls is large, this model is highly rigid in all directions. It can adequately receive a moment even in a single rail configuration.

Additionally, since the second moment of inertia of the rail is large, the rigidity in the lateral directions is also high. Accordingly, it does not need reinforcement such as a side support.

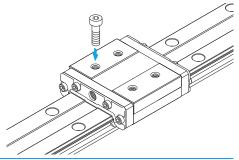
[Self-adjustment Capability]


The self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed even under a preload, thus to achieve highly accurate, smooth straight motion.

Types and Features

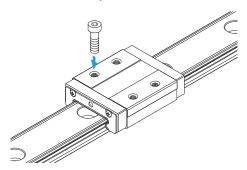
Model HRW-CA

The flange of this LM block has tapped holes. Can be mounted from the top or the bottom.


Specification Table⇒B1-114

Model HRW-CR

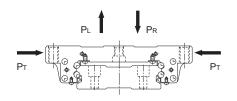
The LM block has tapped holes.


Specification Table⇒B1-116

Miniature Type Model HRW-LR

The LM block has tapped holes.

Specification Table⇒**B**1-116



Rated Loads in All Directions

Model HRW is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of model HRW 17 to 60 are equal in all the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HRW.

The basic load ratings of models HRW 12 and 14 indicate the values in the radial directions in Fig.1, and their actual values are provided in the specification table for HRW. The values in the reverse radial and lateral directions are obtained from Table1 below.

Fia.1

Table 1 Rated Loads in All Directions with Models HRW 12 and 14

Table France Leade III III Birocaelle Wall Medele Firth 12 and 11			
Direction Basic dynamic load rating		Basic static load rating	
Radial direction	С	C ₀	
Reverse radial direction	C _L =0.78C	C _{0L} =0.71C ₀	
Lateral directions	C _T =0.48C	С₀т=0.35С₀	

Equivalent Load

When the LM block of models HRW 17 to 60 receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

P_R : Radial load (N)

P_L : Reverse radial load (N)

 P_{T} : Lateral load (N)

When the LM block of models HRW 12 and 14 receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

P_E : Equivalent load (N)

: Reverse radial direction

: Lateral direction

P_L : Reverse radial load (N)

 P_T : Lateral load (N) X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Models HRW12 and 14

P₅	X	Y
Equivalent load in reverse radial direction	1	2
Equivalent load in lateral direction	0.5	1

Service Life

For details, see A1-76.

Radial Clearance Standard

For details, see A1-90.

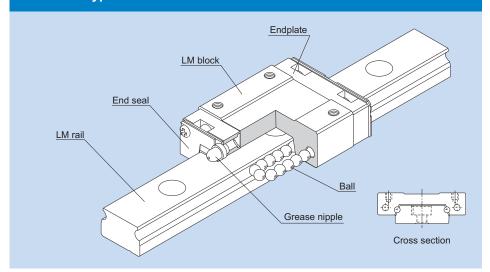
Accuracy Standards

For details, see A1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-312.

Error Allowance in the Parallelism between Two Rails


For details, see A1-316.

Error Allowance in Vertical Level between Two Rails

For details, see A1-319.

RSR

LM Guide Miniature Types Model RSR

▶ ▶▶ ▲1-183
▶ ▶▶ ▲ 1-184
▶▶▶▲1-186
▶ ▶▶ ▲1-187
▶ ▶▶ ▲1-187
▶ ▶▶ ▲1-76
▶▶▶ ▲1-90
▶▶▶▲1-101
▶▶▶▲1-314
▶▶▶▲1-316
▶▶▶▲1-319
▶▶▶▲1-188
▶ ▶▶ ▲ 1-317
▶▶ ■ 1-120
▶▶▶ ■ 1-128
▶ ▶▶■ 1-128

Structure and Features

With models RSR and RSR-W, balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Since balls circulate in a compact structure, the LM Block is able to provide infinite straight motion and thus infinite stroke.

The LM block is designed to have a shape with high rigidity in a limited space, and in combination with large-diameter balls, demonstrates high rigidity in all directions.

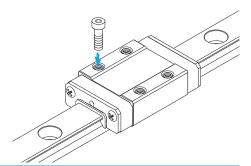
[Ultra Compact]

The absence of cage displacement, a problem that cross-roller guides and types of ball slides with finite stroke tend to cause, make these models highly reliable LM systems.

[Capable of Receiving Loads in All Directions]

These models are capable of receiving loads in all directions, and a single-rail guide can adequately operate under a small moment load. Model RSR-W, in particular, has a greater number of effective balls and a broader LM rail to increase its rigidity against a moment. Thus, it achieves a more compact structure and more durable straight motion than a pair of linear bushes in parallel use.

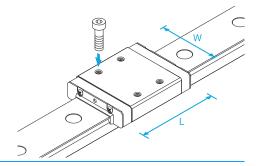
[Stainless Steel Type also Available]


A special type where LM block, LM rail and balls are made of stainless steel is also available.

Types and Features

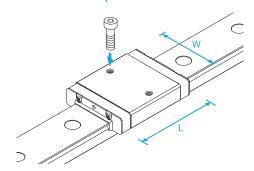
Models RSR-M/RSR-KM/RSR-VM

This model is a standard type.


Specification Table⇒**B**1-122

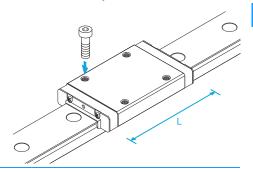
Models RSR-WM/WV/WVM

These models have greater overall LM block lengths (L), broader widths (W) and greater rated loads and permissible moments than standard types.


Specification Table⇒**B**1-124

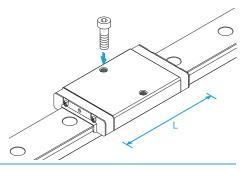
Model RSR-WTM

Has position of LM block mounting holes changed compared with RSR-WM.


Specification Table⇒**B**1-124

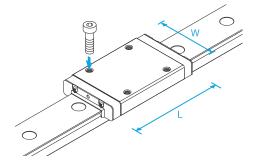
Model RSR-N

It has a longer overall LM block length (L) and a greater rated load than standard types.


Specification Table⇒B1-120

Model RSR-TN

Has position of LM block mounting holes changed compared with RSR-N.


Specification Table⇒**B**1-120

Models RSR-WN/WTN

It has a longer overall LM block length (L), a greater rated load than standard types. Achieves the greatest load capacity among the miniature type LM Guide models.

Specification Table⇒B1-124

Comparison of Model RSR-W with Other Model Numbers

[Locations where a Pair of Linear Bushes are Used]

- Unlike the linear bushes, model RSR-W can be used in a single-rail configuration and allows space saving.
- Since model RSR-W has more load-bearing balls per row and wider LM block and LM rail, thus to achieve high rigidity against an overhung load.
- Accuracy can be achieved simply by mounting the LM rail using bolts. Therefore, the assembly time can be shortened.

Example of comparing model RSR12W with model LM 10 in use

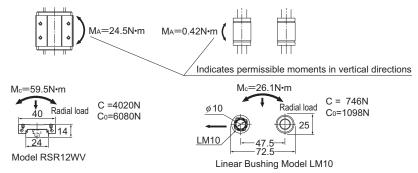


Fig.1

[Locations where a Cross-roller Table is Used]

- Does not show cage displacement even with vertical mount, and capable of performing infinite straight motion.
- Eliminates the need for difficult clearance adjustment and achieves long-term, smooth motion over a long period of time.
- Since the LM block width is large, the model can be used as a miniature table without any modification.

Example of comparing model RSR9WV with model VRM1035 in use

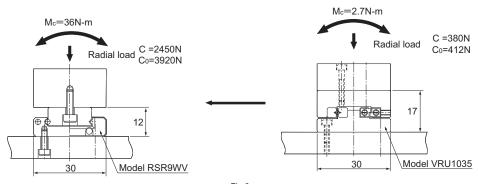


Fig.2

Rated Loads in All Directions

Model RSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of models RSR3 to 9 are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSR.

The basic load ratings of models RSR12 to 20 indicate the values in the radial direction in Fig.3, and their actual values are provided in the specification table for RSR. The values in the reverse radial and lateral directions are obtained from Table1 below.

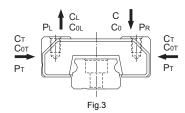


Table1 Basic Load Ratings of Models RSR12 to 20 in All Directions

•		
Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direction	CL=0.78C	C _{0L} =0.70C ₀
Lateral directions	C _⊤ =0.78C	Сот=0.71Со

Equivalent Load

When the LM block of models RSR3 to 9 receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E : Equivalent load (N)

: Radial direction

· Reverse radial direction

: Lateral direction

 P_R : Radial load (N) P_L : Reverse radial load (N) P_T : Lateral load (N)

When the LM block of model RSR12 to 20 receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N)

PL : Reverse radial load (N)

P_⊤ : Lateral load (N)

X, Y: Equivalent factor

(see Table2 and Table3)

Table2 Equivalent Factor of Models RSR12 to 20 (When radial and lateral loads are applied)

P₌	X	Y
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Models RSR12 to 20 (When reverse radial and lateral loads are applied)

PE	X	Y
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Service Life

For details see A 1-76.

Radial Clearance Standard

For details, see A 1-90.

Accuracy Standards

For details, see A 1-101.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A 1-314.

Error Allowance in the Parallelism between Two Rails

For details.see A1-316.

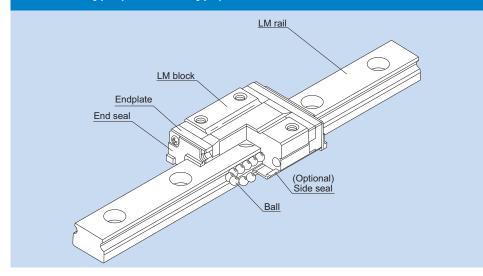
Error Allowance in Vertical Level between Two Rails

For details, see A1-319.

Accuracy of the Mounting Surface

Model RSR uses Gothic arch grooves in the ball raceways. When two rails of RSR are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Permissible Error of the Mounting Surface on 🔼 1-315.

When using this model in locations where it is difficult to obtain satisfactory accuracy of the mounting surface, we recommend using types RSR···A (semi standard) whose ball raceways have circular-arc grooves. (avoid using these types in a single-rail configuration).


For specific accuracy of the mounting surface for types RSR···A, Permissible Error of the Mounting Surface is on A1-315.

Flatness of the Mounting Surface

For details.see A1-317.

RSR-Z

LM Guide Miniature Type (Low Cost Type) Model RSR-Z

Structure and Features	▶ ▶▶ ▲1-191
Types and Features	▶ ▶▶ ▲1-192
Rated Loads in All Directions	▶▶▶▲1-193
Equivalent Load	▶▶▶▲1-193
Service Life	▶▶▶ A1-76
Radial Clearance Standard	▶▶▶ A1-90
Accuracy Standards	▶▶▶▲1-101
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-314
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-316
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-319
Accuracy of the Mounting Surface	▶▶▶▲1-194
Flatness of the Mounting Surface	▶▶▶▲1-317
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶ ■ 1-130
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-134
Stopper	▶ ▶▶■ 1-134

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Balls of model RSR-Z circulate in a compact structure and perform infinite straight motion with no limit in stroke.

Also, it has the same dimensions as models RSR/RSR-W, but achieves a lighter weight and a lower price.

[Lightweight]

Since part of the LM block body uses a resin material, the block mass is reduced by up to 28% from the conventional type model RSR-V. This makes RSR-Z a low-inertia type.

[Smooth Motion]

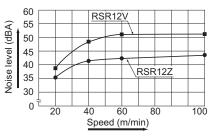
The unique structure of the endplate allows the balls to circulate smoothly and infinitely.

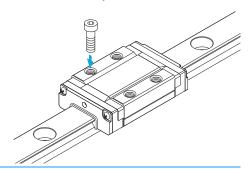
[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

[Low Noise]

Since the unloaded ball path is made of resin, there is no metal to metal contact and low noise is achieved.

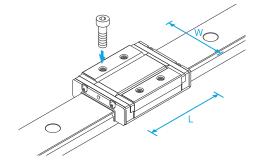



Fig.1 Noise Levels of Models RSR12Z and RSR12V

Types and Features

Model RSR-ZM

This model is a standard type.


Specification Table⇒**B**1-130

Model RSR-WZM

It has a longer overall LM block length (L), a broader width (W) and greater rated load and permissible moment than RSR-Z.

Specification Table⇒**B**1-132

Rated Loads in All Directions

Model RSR-Z is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of models RSR7Z/WZ and 9Z/WZ are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSR-Z.

The basic load ratings of models RSR12Z/WZ and 15Z/WZ indicate the values in the radial direction in Fig.2, and their actual values are provided in the specification table for RSR-Z. The values in the reverse radial and lateral directions are obtained from Table 1.

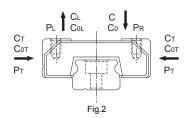


Table1 Basic Load Ratings of Models RSR12Z/WZ and 15Z/WZ in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radialdirection	С	C₀
Reverse radial direction	CL=0.78C	C _{0L} =0.70C ₀
Lateraldirections	C₁=0.78C	Сот=0.71Со

Equivalent Load

When the LM block of models RSR7Z/WZ and 9Z/WZ receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{P}_{R} (\mathbf{P}_{L}) + \mathbf{P}_{T}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

When the LM block of model RSR12Z/WZ and 15Z/WZ receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

P_E : Equivalent load (N) : Radial direction : Reverse radial direction

: Lateral direction

P_R : Radial load (N)

P_L : Reverse radial load (N)

 $P_{\scriptscriptstyle T}$: Lateral load (N)

X, Y: Equivalent factor

(see Table2 and Table3)

Table2 Equivalent Factor of Models RSR12Z/WZ and 15Z/WZ (when radial and lateral loads are applied)

P _E	Х	Y
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Models RSR12Z/WZ and 15Z/WZ (when reverse radial and lateral loads are applied)

PE	Χ	Y
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Service Life

For details see A1-76.

Radial Clearance Standard

For details, see A1-90.

Accuracy Standards

For details, see A1-101.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A 1-314.

Error Allowance in the Parallelism between Two Rails

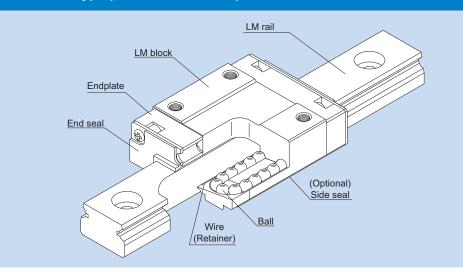
For details, see A1-316.

Error Allowance in Vertical Level between Two Rails

For details, see A1-319.

Accuracy of the Mounting Surface

Model RSR-Z uses Gothic arch grooves in the ball raceways. When two rails are used in parallel, any error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Permissible Error of the Mounting Surface on 🔼 1-315.


Flatness of the Mounting Surface

For details.see A1-317.

RSH

LM Guide

Miniature Type (with a Ball Retainer) Model RSH

▶ ▶▶ ▲1-197
▶ ▶▶ ▲1-197
▶ ▶▶ ▲1-198
▶ ▶▶ ▲1-198
▶ ▶▶ ▲1-76
▶▶▶ ▲1-90
▶ ▶▶ ▲1-101
▶▶▶▲1-314
▶ ▶▶ ▲1-316
▶▶▶▲1-319
▶ ▶▶ ▲1-199
▶▶▶▲1-317
▶▶▶ ■ 1-136
▶▶▶ ■ 1-138

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since a retainer holds the balls, they will not fall off even if the LM block is removed from the LM rail.

Similar to RSR, with the Miniature Type LM Guide Equipped with a Ball Retainer model RSH, balls circulate in a compact structure, and the LM Block is able to provide infinite straight motion and thus infinite stroke. The LM block is designed to have a shape with high rigidity in a limited space, and in combination with large-diameter balls, demonstrates high rigidity in all directions.

[Miniature Size]

This model is a highly reliable, ultra compact LM Guide that responds to weight saving and space saving.

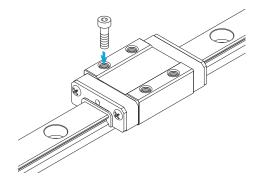
[Capable of Receiving Loads in All Directions]

This model is capable of receiving loads in all directions, and has a high load capacity because of large-diameter balls incorporated in two rows of raceways.

[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

[Equipped with a Ball Retainer]


The LM block contains a retainer capable of preventing balls from falling off. Since the balls will not fall even if the LM block is removed from the LM rail, you can use this LM Guide at ease.

Types and Features

Models RSH-M/KM/VM

This model is a standard type.

Specification Table⇒**B**1-136

Rated Loads in All Directions

Model RSH is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of models RSH7 and 9 are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSH.

The basic load ratings of model RSH12 indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for RSH. The values in the reverse radial and lateral directions are obtained from Table1 below.

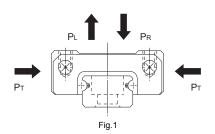


Table1 Basic Load Ratings of Model RSH12 in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C₀
Reverse radial direction	CL=0.78C	CoL=0.70Co
Lateral directions	C₁=0.78C	C _{0T} =0.71C ₀

Equivalent Load

When the LM block of models RSH7 and 9 receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{P}_{R} (\mathbf{P}_{L}) + \mathbf{P}_{T}$

 P_E : Equivalent load (N)

· Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

When the LM block of model RSH12 receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

(N)

 $P_E = X \cdot P_R (P_L) + Y \cdot P_T$

P_E : Equivalent load (N)

: Radial direction : Reverse radial direction

: Lateral direction

 P_R : Radial load (N)

P_L : Reverse radial load (N)

P_T: Lateral load
X, Y: Equivalent factor

(see Table2 and Table3)

Table2 Equivalent Factor of Model RSH12 (when radial and lateral loads are applied)

P₅	Х	Y
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Model RSH12 (when reverse radial and lateral loads are applied)

PE	Х	Y
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Service Life

For details see A 1-76.

Radial Clearance Standard

For details, see A 1-90.

Accuracy Standards

For details.see A1-101.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A 1-314.

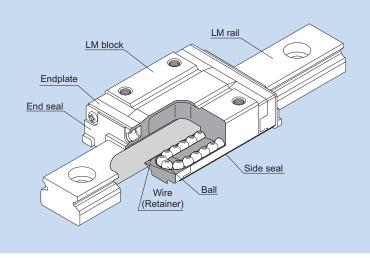
Error Allowance in the Parallelism between Two Rails

For details, see **A**1-316.

Error Allowance in Vertical Level between Two Rails

For details, see A 1-319.

Accuracy of the Mounting Surface


Flatness of the Mounting Surface

For details.see A1-317.

RSH-Z

LM Guide

Miniature Type (with a Ball Retainer) Model RSH-Z

Types and Features Rated Loads in All Directions Equivalent Load Service Life Radial Clearance Standard Accuracy Standards Shoulder Height of the Mounting Base and the Corner Radius Error Allowance in the Parallelism between Two Rails ▶▶ △1-3 ■ ■ □-2 ■ □-1-2 ■ □-2 ■ □-2 ■ □-3 ■ □-	203 203
Equivalent Load Service Life Radial Clearance Standard Accuracy Standards Shoulder Height of the Mounting Base and the Corner Radius ▶▶ △1-3	203
Service Life Radial Clearance Standard Accuracy Standards Shoulder Height of the Mounting Base and the Corner Radius ▶▶ △1-3	
Radial Clearance Standard Accuracy Standards Shoulder Height of the Mounting Base and the Corner Radius ▶▶▲1-3	
Accuracy Standards ►►►△1-1 Shoulder Height of the Mounting Base and the Corner Radius ►►►△1-3	-76
Shoulder Height of the Mounting Base and the Corner Radius ►►►▲1-3	-90
	01
Error Allowance in the Parallelism between Two Rails ▶▶▶▲1-3	314
	316
Error Allowance in Vertical Level between Two Rails ▶▶▶▲1-3	319
Accuracy of the Mounting Surface ▶▶▶▲1-2	204
Flatness of the Mounting Surface ▶▶▶▲1-3	317
Dimensional Drawing, Dimensional Table, Example of Model Number Coding ►►►■1-1	140
Standard Length and Maximum Length of the LM Rail ►►►■1-1	44

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since a retainer holds the balls, they will not fall off even if the LM block is removed from the LM rail.

With model RSH-Z, balls circulate in a compact structure and perform infinite straight motion with no limit in stroke.

Also, it has the same dimensions as the conventional model, but achieves a lower price.

[Equipped with a Ball Retainer]

Model RSH-Z has a retainer capable of preventing balls from falling off. Since the balls will not fall even if the LM block is removed from the LM rail, you can use this LM Guide at ease.

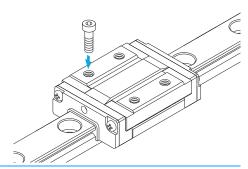
[Lightweight]

Since part of the LM block body uses a resin material, the block mass is reduced by up to 30% from the conventional type. This makes RSH-Z a low-inertia type.

[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

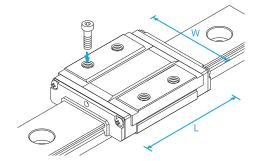
[Low Noise]


Since the unloaded ball path is made of resin, there is no metal to metal contact and low noise is achieved.

Types and Features

Model RSH-ZM

This model is a standard type.


Specification Table⇒**B**1-140

Model RSH-WZM

This model has a greater overall LM block length (L), broader width (W) and greater rated load and permissible moment than model RSH-Z.

Specification Table⇒B1-142

Rated Loads in All Directions

Model RSH-Z is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of models RSH7Z/WZ and 9Z/WZ are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSH-Z.

The basic load ratings of models RSH12Z/WZ and 15Z/WZ indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for RSH-Z. The values in the reverse radial and lateral directions are obtained from Table1 below.

Table1 Basic Load Ratings of Models RSH12Z/WZ and 15Z/WZ in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C₀
Reverse radial direction	CL=0.78C	C ₀ L=0.70C ₀
Lateral directions	C _⊤ =0.78C	С _{от} =0.71С _о

Equivalent Load

When the LM block of models RSH7Z/WZ and 9Z/WZ receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

 P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{ll} P_{\mbox{\tiny R}} & : \mbox{Radial load} & (\mbox{\scriptsize N}) \\ P_{\mbox{\tiny L}} & : \mbox{Reverse radial load} & (\mbox{\scriptsize N}) \end{array}$

 P_{T} : Lateral load (N)

When the LM block of models RSH12Z/WZ and 15Z/WZ receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

P_E: Equivalent load (N): Radial direction

: Reverse radial direction

: Lateral direction

P_R : Radial load (N)

 P_{\perp} : Reverse radial load (N) P_{\top} : Lateral load (N)

X, Y: Equivalent factor

(see Table2 and Table3)

Table2 Equivalent Factor of Models RSH12Z/WZ and 15Z/WZ (when radial and lateral loads are applied)

PE	Х	Y
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Models RSH12Z/WZ and 15Z/WZ (when reverse radial and lateral loads are applied)

P₅	Х	Υ
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Service Life

For details see A 1-76.

Radial Clearance Standard

For details, see A 1-90.

Accuracy Standards

For details, see A1-101.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A1-314.

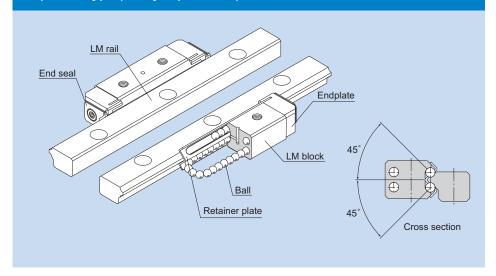
Error Allowance in the Parallelism between Two Rails

For details, see A1-316.

Error Allowance in Vertical Level between Two Rails

For details, see A1-319.

Accuracy of the Mounting Surface


Models RSH-Z and WZ uses Gothic arch grooves in the ball raceways. When two rails are used in parallel, error in accuracy of the mounting surface may increase rolling resistance and negatively affect the smooth motion of the guide. For specific accuracy of the mounting surface, see Permissible Error of the Mounting Surface on 🔼 1-315.

Flatness of the Mounting Surface

For details.see A1-317.

LM Guide Separate Type (4-way Equal Load) Model HR

Structure and Features	▶ ▶▶ ▲1-207
Types and Features	▶▶▶▲1-208
Rated Loads in All Directions	▶▶▶▲1-209
Equivalent Load	▶▶▶▲1-209
Service Life	▶ ▶▶ ▲1-76
Example of Clearance Adjustment	▶▶▶▲1-210
Accuracy Standards	▶ ▶▶ ▲1-99
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-313
Error Allowance in the Parallelism between Two Rails	▶▶▶ △ 1-316
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-319
Comparison of Model Numbers with Cross-roller Guides	▶▶▶ △ 1-211
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶ ■ 1-146
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-150
Accessories	▶ ▶▶■ 1-151

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off.

Because of the angular contact structure where two rows of balls rolling on the LM rail each contact the raceway at 45°, the same load can be applied in all directions (radial, reverse radial and lateral directions) if a set of LM rails and LM block is mounted on the same plane (i.e., when two LM rails are combined with an LM block on the same plane). Furthermore, since the sectional height is low, a compact and stable linear guide mechanism is achieved.

This structure makes clearance adjustment relatively easy, and is highly capable of absorbing a mounting error.

[Easy Installation]

Model HR is easier to adjust a clearance and achieve more accuracy than cross-roller guides.

[Self-adjustment Capability]

Even if the parallelism or the level between the two rails is poorly established, the self-adjustment capability through front-to-front configuration of THK's unique circular-arc grooves (DF set) enables a mounting error to be absorbed and smooth straight motion to be achieved even under a preload.

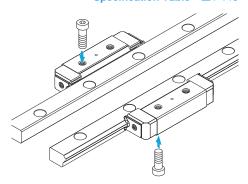
[4-way Equal Load]

When the two rails are mounted in parallel, each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in various orientations and in applications.

ISectional Dimensions Approximate to Cross-roller Guides

Since model HR utilizes endcaps for recirculation, cage/retainer creep cannot occur as with crossroller guides. In addition, the sectional shape of model HR is approximate to that of cross-roller guides, therefore, its components are dimensionally interchangeable with that of cross-roller guides.

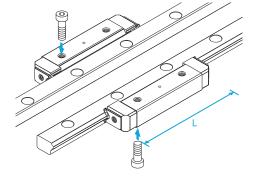
[Stainless Steel Type also Available]


A special type whose LM block, LM rail and balls are made of stainless steel is also available.

Types and Features

Model HR - Heavy-load Type

The LM blocks can be mounted from the top and the bottom.


Specification Table⇒**B**1-146

Model HR-T-Ultra-heavy Load Type

Has the same cross-sectional shape as model HR, but has a greater overall LM block length (L) and a higher load rating.

Specification Table⇒**B**1-148

Rated Loads in All Directions

When installed, one set of model HR is capable of receiving loads in all four directions: radial, reverse radial and lateral directions.

The basic load ratings of an installed set of model HR are equal in all four directions (radial, reverse radial and lateral directions). The basic load ratings in the specification table for model HR indicate the values in the radial direction per LM block as shown in Fig.1.

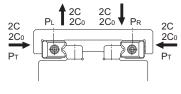


Fig.1

Equivalent Load

When the LM block of model HR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

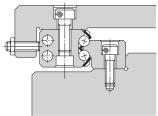
$$P_E = P_R (P_L) + \frac{1}{2} P_T$$

P_E: Equivalent load (N)

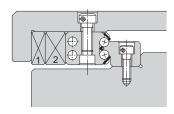
: Radial direction

: Reverse radial direction

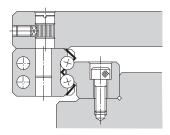
: Lateral direction


 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

Service Life


For details, see A 1-76.

Example of Clearance Adjustment


Design the clearance adjustment bolt so that it presses the center of the side face of the LM block.

Using an adjustment screw
 Normally, an adjustment screw is used to press the LM block.

Using tapered gibs
 When high accuracy and high rigidity are required, use tapered gibs 1) and 2).

Using an eccentric pin
 A type using an eccentric pin to adjust the clearance is also available.

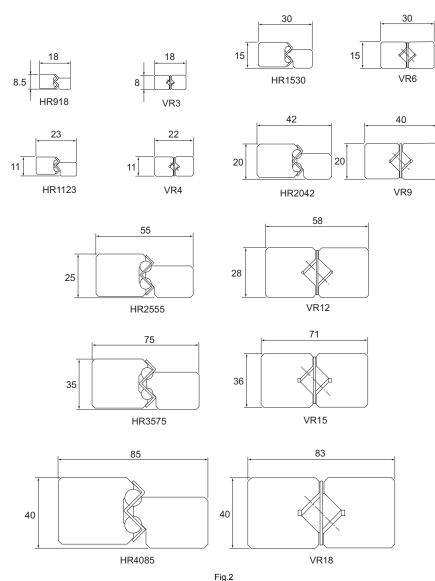
Accuracy Standards

For details, see A1-99.

Shoulder Height of the Mounting Base and the Corner Radius

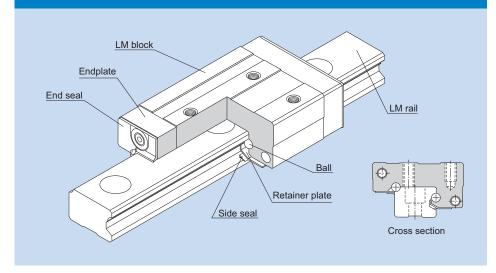
For details, see A1-313.

Error Allowance in the Parallelism between Two Rails


For details.see A1-316.

Error Allowance in Vertical Level between Two Rails

For details, see **A**1-319.


Comparison of Model Numbers with Cross-roller Guides

Each type of LM Guide model HR has sectional dimensions approximate to that of the corresponding cross roller guide model.

GSR

LM Guide Separate Type (Radial) Model GSR

Structure and Features	▶ ▶▶ ▲1-213
Types and Features	▶▶▶▲1-214
Rated Loads in All Directions	▶▶▶▲1-215
Equivalent Load	▶▶▶▲1-215
Service Life	▶ ▶▶ ▲1-76
Example of Clearance Adjustment	▶▶▶▲1-216
Accuracy Standards	▶▶▶▲1-100
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-313
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-316
Error Allowance in Vertical Level between Two Rails	▶ ▶▶ ▲1-319
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-154
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-156
Tapped-hole LM Rail Type of Model GSR	▶▶▶ B 1-156

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off.

As the top face of the LM block is inclined, a clearance is eliminated and an appropriate preload is applied simply by securing the LM block with mounting bolts.

Model GSR has a special contact structure using circular-arc grooves. This increases self-adjusting capability and makes GSR an optimal model for places associated with difficulty establishing high accuracy and for general industrial machinery.

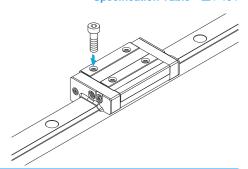
[Interchangeability]

Both the LM block and LM rail are interchangeable and can be stored separately. Therefore, it is possible to store a long-size LM rail and cut it to a desired length before using it.

[Compact]

Since model GSR has a low center of gravity structure with a low overall height, the machine can be downsized.

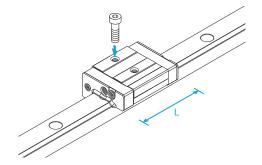
[Capable of Receiving a Load in any Direction]


The ball contact angle is designed so that this model can receive a load in any direction. As a result, it can be used in places where a reverse radial load, lateral load or a moment in any direction is applied.

Types and Features

Model GSR-T

This model is a standard type.


Specification Table⇒**B**1-154

Model GSR-V

A space-saving type that has the same cross-sectional shape as GSR-T, but has a shorter overall LM block length (L).

Specification Table⇒**B**1-154

Rated Loads in All Directions

Model GSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for GSR. The values in the radial direction, tensile lateral direction and compressive lateral direction are obtained from Table1.

Note) Not available for a single-axis configuration.

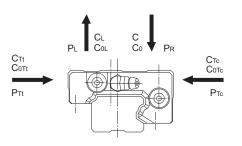


Fig.1

Table 1 Basic Load Ratings of Model GSR in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direction	C _L =0.93C	C _{0L} =0.90C ₀
Tensile lat- eral direction	C _{Tt} =0.84C	Cott=0.78Co
Compressive lateral direction	С _{тс} =0.93С	Сотс=0.90Со

Equivalent Load

 P_R

When the LM block of model GSR receives loads in the radial, tensile lateral, reverse radial and compressive lateral directions simultaneously, the equivalent load is obtained from the equation below.

$$P_E = X \cdot P_R + Y \cdot P_{Te}$$

$$P_E = P_L + P_{Te}$$

: Equivalent load (N)

: Radial direction

· Reverse radial direction

: Tensile lateral direction

: Compressive lateral direction : Radial load (N)

P : Reverse radial load

(N)

: Tensile lateral load (N)

: Compressive lateral direction load

(N)

(see Table2) X, Y: Equivalent factor

Table2 Equivalent Factor of Model GSR (when radial and tensile lateral loads are applied)

(
P₅	Х	Y
Equivalent load in the radial direction	1	1.28
Equivalent load in tensile lateral direction	0.781	1

Service Life

For details, see A 1-76.

Example of Clearance Adjustment

By providing a shoulder maybe on the side face of each LM block and pressing either LM block with a bolt, a preload is applied and the rigidity is increased.

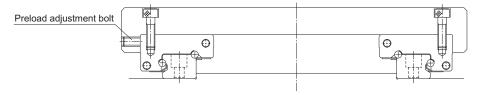


Fig.2 Example of Adjusting a Preload with a Push Bolt

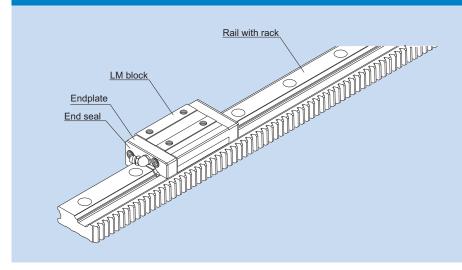
Accuracy Standards

For details, see A1-100.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A1-313.

Error Allowance in the Parallelism between Two Rails


For details, see A 1-316.

Error Allowance in Vertical Level between Two Rails

For details, see A1-319.

GSR-R

LM Guide Separate Type (Radial) Model GSR-R

Structure and Features	▶▶▶▲1-219
Types and Features	▶ ▶▶ ▲ 1-220
Rated Loads in All Directions	▶▶▶▲1-220
Equivalent Load	▶▶▶▲1-221
Service Life	▶ ▶▶ ▲1-76
Accuracy Standards	▶ ▶▶ ▲1-100
Shoulder Height of the Mounting Base and the Corner Radius	▶ ▶▶ ▲1-313
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-316
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-319
Rack and Pinion	▶▶▶▲1-222
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-158
Standard Length of the LM Rail	▶▶▶ B 1-160

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off.

As the top face of the LM block is inclined, a clearance is eliminated and an appropriate preload is applied simply by securing the LM block with mounting bolts.

Model GSR-R is based on model GSR, but has rack teeth on the LM rail. This facilitates the design and assembly of drive mechanisms.

[Reduced Machining and Assembly Costs]

The single-piece structure integrating the LM rail (linear guide) and rack (drive) reduces labor and time for machining the rack mounting surface and assembling and adjusting the guide system, thus to achieve significant cost reduction.

[Easy Designing]

The travel distance per turn of the pinion is specified by the integer value. This makes it easy to calculate the travel distance per pulse when the LM Guide is used in combination with a stepping motor or servomotor.

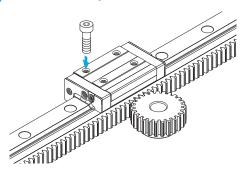
[Space Saving]

Since the rail has a rack, the machine size can be reduced.

[Long Stroke]

The end faces of the LM rail are machined for jointed use. To obtain a long stroke, simply joint LM rails of the standard length.

[High Durability]

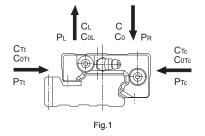

The rack tooth has a width equal to the LM rail height, the rack uses high-grade steel with proven performance and the tooth surface are heat-treated, thereby to ensure high durability.

Types and Features

Model GSR-R (Rail with Rack)

Since the thrust load on the pinion shaft can be kept low due to rack-pinion meshing, it is easy to design systems with pinion shaft bearings and tables that are not so rigid.

Specification Table⇒**B**1-158


Rated Loads in All Directions

Model GSR-R is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for GSR-R. The values in the radial direction, tensile lateral direction and compressive lateral direction are obtained from Table1.

Table1 Basic Load Ratings of Model GSR-R in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	Co
Reverse radial direction	C₁=0.93C	C _{0L} =0.90C ₀
Tensile lateral direction	C _{Tt} =0.84C	Соті=0.78Со
Compressive lateral direction	C _{Tc} =0.93C	Сотс=0.90Со

Equivalent Load

When the LM block of model GSR-R receives loads in the radial, tensile lateral, reverse radial and compressive lateral directions simultaneously, the equivalent load is obtained from the equation below.

 $P_E = X \cdot P_R + Y \cdot P_{Tt}$ $P_E = P_L + P_{Tc}$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Tensile lateral direction

: Compressive lateral direction

P_R : Radial load (N)

P_L : Reverse radial load (N)

P_{Tt} : Tensile lateral load (N)

P_{Tc} : Compressive lateral direction load

(N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model GSR-R (when radial and tensile lateral loads are applied)

PE	Х	Υ
Equivalent load in the radial direction	1	1.28
Equivalent load in tensile lateral direction	0.781	1

Service Life

For details, see **A**1-76.

Accuracy Standards

For details, see A1-100.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A 1-313.

Error Allowance in the Parallelism between Two Rails

For details, see A 1-316.

Error Allowance in Vertical Level between Two Rails

For details.see A 1-319.

Rack and Pinion

[Joining Two or More Rails]

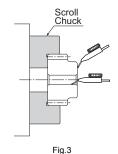
The end faces of the rail with rack are machined so that a clearance is left after assembly in order to facilitate the assembly.

Use of a special jig as shown in Fig.2 will make the connection easier.

(THK also offers the rack-aligning jig.)

[Reworking the Pinion Hole]

Only the teeth of the reworkable pinion-holediameter type (type C) are heat-treated. The hole and keyway can therefore be reworked by the user to the desired diameter and shape.


When reworking the pinion hole, be sure to take the following into account.

The material of the reworkable hole diameter type (type C): S45C

- (1) When chucking the teeth of a reworkable hole diameter type, use a jaw scroll chuck or something like it to maintain the tooth profile.
- (2) The pinion is produced using the center of the hole as a reference point. The center of the hole should therefore be used as a reference point when the pinion is aligned. When checking the pinion runout, refer to the boss sides.
- (3) Keep the reworked hole diameter within roughly 60 to 70% of the boss diameter.

Rack-aligning jig

Fig.2 Rack Connection Method

[Lubricating the Rack and Pinion]

To ensure smooth sliding on tooth surfaces and prevent wear, the teeth should be provided with a lubricant.

Note1) Use a lubricant of the same type of thickener as that contained in the LM Guide.

Note2) Unpredictable wear may occur in the rack and pinion according to load conditions and lubrication status. Contact THK when undertaking design.

[Checking Strength]

The strength of the assembled rack and pinion must be checked in advance.

- (1) Calculate the maximum thrust acting on the pinion.
- (2) Divide the permissible power transmission capacity of the pinion to be used (Table3) by an overload factor (Table4).
- (3) By comparing the thrust acting on the pinion obtained in step 1 with the pinion power transmission capacity obtained in step 2, make sure the applied thrust does not exceed the permissible power transmission capacity.

[Example of calculation]

Model GSR-R is used in a horizontal conveyance system receiving a medium impact (assuming external load to be zero).

Conditions

Subject model No. (pinion) GP6-20A

Mass (table + work) m=100kg

Speed v=1 m/s

Acceleration/deceleration time T₁ =0.1 s

Consideration

 Calculating the maximum thrust Calculated the thrust during acceleration/ deceleration.

$$Fmax = m \cdot \frac{V}{T_1} = 1.00kN$$

(2) Permissible power transmission capacity of the pinion

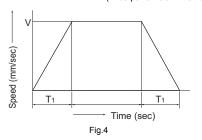
Pmax =
$$\frac{\text{Permissible power transmission capacity}}{\text{(see Table 3)}} = \frac{2.33}{1.25}$$
=1.86kN

(3) Comparison between the maximum thrust and the permissible power transmission capacity of the pinion

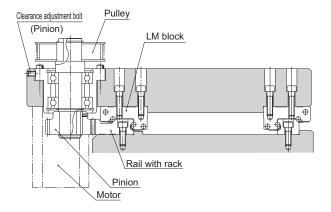
Fmax<Pmax

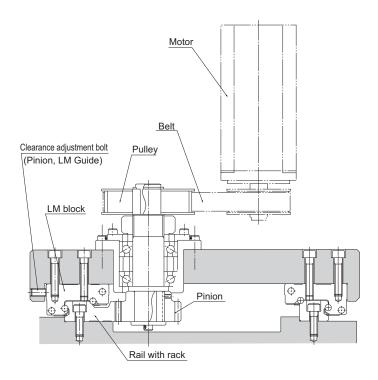
Therefore, it is judged that the subject model number can be used.

Table3 Permissible Power transmission Capacity

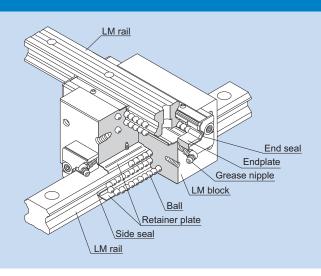

Unit: kN

		Offit. KIN
Model No.	Permissible Power transmission Capacity	Supported model
GP 6-20A	2.33	
GP 6-20C	2.05	GSR 25-R
GP 6-25A	2.73	GSIX 23-IX
GP 6-25C	2.23	
GP 8-20A	3.58	
GP 8-20C	3.15	GSR 30-R
GP 8-25A	4.19	001(00-1(
GP 8-25C	3.42	
GP10-20A	5.19	
GP10-20C	4.57	GSR 35-R
GP10-25A	6.06	GON 30-K
GP10-25C	4.96	


Table4 Overload Factor


Impact from the	Impact from the driven machine			
prime mover	Uniform load	Medium impact	Large impact	
Uniform load (electric motor, tur- bine, hydraulic motor, etc.)	1.0	1.25	1.75	

(Excerpt from JGMA401-01)


[Example of Assembling Model GSR-R with the Table]

CSR

LM Guide Cross LM Guide Model CSR

Structure and Features	▶▶▶▲1-227
Types and Features	▶▶▶▲1-228
Rated Loads in All Directions	▶▶▶▲1-228
Equivalent Load	▶▶▶▲1-229
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-90
Accuracy Standards	▶ ▶▶ ▲1-98
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-308
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-315
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-162
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-164
Tapped-hole LM Rail Type of Model CSR	▶▶▶ B 1-165

Balls roll in four rows of raceways precision-ground on a LM rail and a LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off even if the LM rail is pulled out.

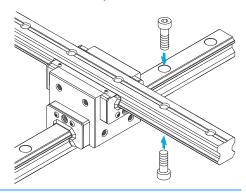
This model is an integral type of LM Guide that squares an internal structure similar to model HSR, which has a proven track record and is highly reliable, with another and uses two LM rails in combination. It is machined with high precision so that the perpendicularity of the hexahedron of the LM block is within 2 μ m per 100 mm in error. The two rails are also machined with high precision in relative straightness. As a result, extremely high accuracy in orthogonality is achieved. Since an orthogonal LM system can be achieved with model CSR alone, a conventionally required saddle is no longer necessary, the structure for X-Y motion can be simplified and the whole system can be downsized.

[4-way Equal Load]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.

[High Rigidity]

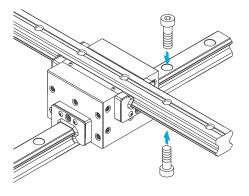
Since balls are arranged in four rows in a well-balanced manner, this model is stiff against a moment, and smooth straight motion is ensured even a preload is applied to increase the rigidity.


The rigidity of the LM blocks is 50% higher than that of a combination of two HSR LM blocks secured together back-to-back with bolts. Thus, CSR is an optimal LM Guide for building an X-Y table that requires high rigidity.

Types and Features

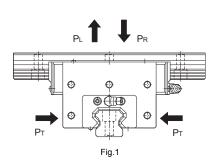
Model CSR-S

This model is a standard type.


Specification Table⇒**B**1-162

Model CSR

It has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B1-162

Rated Loads in All Directions

Model CSR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are defined with an LM rail and two LM blocks, and uniform in the four directions (radial, reverse radial and lateral directions). Their actual values are provided in the specification table for CSR.

Equivalent Load

When the LM block of model CSR receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathsf{E}} = \mathbf{P}_{\mathsf{R}} \left(\mathbf{P}_{\mathsf{L}} \right) + \mathbf{P}_{\mathsf{T}}$

 P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{llll} P_{\mathbb{R}} & : \text{Radial load} & (N) \\ P_{\mathbb{L}} & : \text{Reverse radial load} & (N) \\ P_{\mathbb{T}} & : \text{Lateral load} & (N) \\ \end{array}$

Service Life

For details, see A 1-76.

Radial Clearance Standard

For details.see A 1-90.

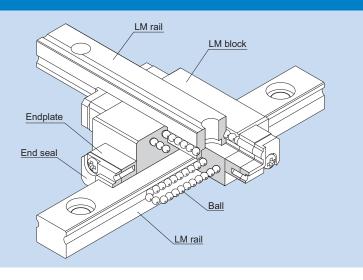
Accuracy Standards

For details, see A1-98.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A 1-308.

Error Allowance in the Parallelism between Two Rails


For details, see A 1-315.

Error Allowance in Vertical Level between Two Rails

For details, see A 1-318.

LM Guide Miniature Cross Guide Model MX

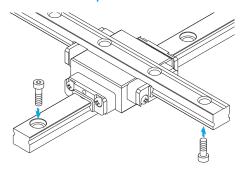
Structure and Features	▶▶▶▲1-231
Types and Features	▶▶▶▲1-232
Rated Loads in All Directions	▶▶▶▲1-232
Equivalent Load	▶▶▶▲1-232
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-91
Accuracy Standards	▶ ▶▶ ▲1-102
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-309
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-168
Standard Length and Maximum Length of the LM Rail	▶ ▶▶■ 1-170

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. This model is an integral type of LM Guide that squares a unit of miniature LM Guide model RSR with another and uses two LM rails in combination. Since an orthogonal LM system with an extremely low height can be achieved with model MX alone, a conventionally required saddle is no longer necessary and the whole system can be downsized.

[4-way Equal Load]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.

[Tapped-hole LM Rail Type]


There are two types of the LM rail: one designed to be mounted from the top with bolts, and a semistandard type whose bottom face has tapped holes, allowing the rail to be mounted from the bottom.

Types and Features

Model MX

MX is divided into two types: RSR5M cross type and RSR7WM cross type.

Specification Table⇒**B**1-168

Rated Loads in All Directions

Model MX is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are defined with an LM rail and an LM block, and uniform in the four directions (radial, reverse radial and lateral directions). Their actual values are provided in the specification table for MX.

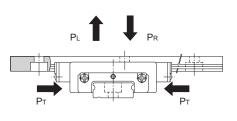


Fig.1

Equivalent Load

When the LM block of model MX receives loads in the radial, reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{P}_{R} (\mathbf{P}_{L}) + \mathbf{P}_{T}$

 P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

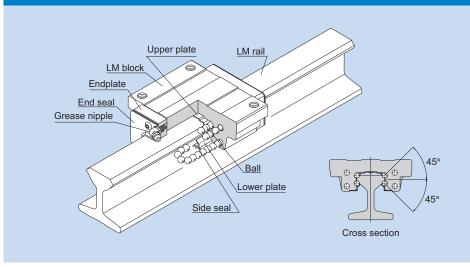
Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see **A**1-91.

Accuracy Standards


For details, see **A**1-102.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-309.

JR

LM Guide Structural Member Rail Model JR

Structure and Features	▶ ▶▶ ▲1-235
Second Moment of Inertia of the LM Rail	▶ ▶▶ ▲1-235
Types and Features	▶ ▶▶ ▲ 1-236
Rated Loads in All Directions	▶▶▶▲1-237
Equivalent Load	▶ ▶▶ ▲ 1-237
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ A1-91
Accuracy Standards	▶ ▶▶ ▲1-97
Shoulder Height of the Mounting Base and the Corner Radius	▶ ▶▶ ▲1-308
Error Allowance in the Parallelism between Two Rails	▶ ▶▶ ▲1-315
Error Allowance in Vertical Level between Two Rails	▶ ▶▶ ▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶ ▶▶■ 1-172
Standard Length and Maximum Length of the LM Rail	▶ ▶▶■ 1-174
Model JB frame for LM rail clamps	▶ ▶▶■ 1-175
Model JT steel plate for LM rail clamps	▶ ▶▶■1-17 5

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate. Since retainer plates hold the balls, they do not fall off even if the LM rail is pulled out.

Model JR uses the same LM block as model HSR, which has a proven track record and is highly reliable. The LM rail has a sectional shape with high flexural rigidity, and therefore can be used as a structural member.

Unlike the conventional LM Guide type, whose LM rail was secured onto the base with bolts when installed, model JR's LM rail is integrated with the mounting base, and the top of the LM rail has the same structure as LM Guide model HSR. The lower part of the LM rail has a hardness of HRC25 or less, making it easy to cut the rail and enabling the rail to be welded.

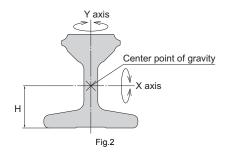
When welding the rail, we recommend using welding rods compliant with JIS D 5816. (suggested manufacturer and model number: Kobelco LB-52).

[4-way Equal Load]

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.

[Can be Mounted Even Under Rough Conditions]

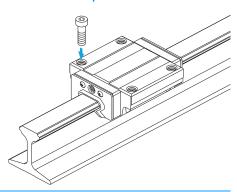
Since the center of the cross-section of the LM rail is slightly thinner, even if the parallelism between two rails is not accurate the LM rail is capable of absorbing the error by bending inward or outward.


[Sectional Shape with High Flexural Rigidity]

Since the LM rail has a sectional shape with high flexural rigidity, it can also be used as a structural member. In addition, even when the LM rail is partially fastened or supported in cantilever, the distortion is minimal.

Fig.1

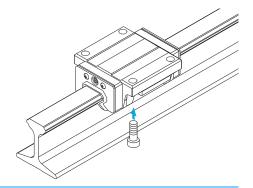
Second Moment of Inertia of the LM Rail


		etrical of inertia ⁵ mm ⁴]	sec	ilus of tion 04 mm³]	Height of gravitational center
	About	About	About	About	H [mm]
	X axis	Y axis	X axis	Y axis	
JR 25	1.90	0.51	0.69	0.21	19.5
JR 35	4.26	1.32	1.43	0.49	24.3
JR 45	12.1	3.66	3.31	1.04	33.1
JR 55	27.6	6.54	5.89	1.40	43.3

Types and Features

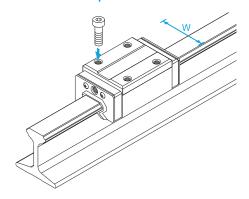
Model JR-A

The flange of its LM block has tapped holes.


Specification Table⇒**B**1-172

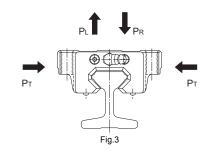
Model JR-B

The flange of the LM block has through holes. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒**B**1-172

Model JR-R

With this type, the LM block has a smaller width (W) and tapped holes. Used in places where the space for table width is limited.


Specification Table⇒**B**1-172

Rated Loads in All Directions

Model JR is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for JR.

Equivalent Load

When the LM block of model JR receives loads in the radial, reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

: Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

: Radial load (N)

: Reverse radial load (N) (N)

: Lateral load

Service Life

For details, see A1-76.

Radial Clearance Standard

For details, see A1-91.

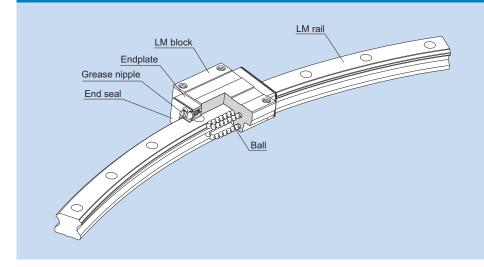
Accuracy Standards

For details, see A1-97.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-308.

Error Allowance in the Parallelism between Two Rails


For details, see A1-315.

Error Allowance in Vertical Level between Two Rails

For details, see A1-318.

LM Guide R Guide Model HCR

Structure and Features	▶▶▶▲1-241
Types and Features	▶▶▶▲1-242
Rated Loads in All Directions	▶▶▶▲1-242
Equivalent Load	▶▶▶ △ 1-242
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ △ 1-91
Accuracy Standards	▶ ▶▶ ▲1-97
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-310
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶ ▶▶B 1-178

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

With a structure that is basically the same as four-way equal load type LM Guide model HSR, which has a proven track record, this R Guide is a new concept product that allows highly accurate circular motion.

[Freedom of Design]

Multiple LM blocks can individually move on the same rail. By arranging LM blocks on the load points, efficient structural design is achieved.

[Shortened Assembly Time]

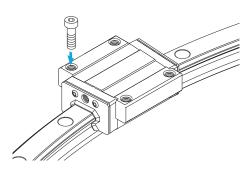
This model allows clearance-free, highly accurate circular motion as opposed to sliding guides or cam followers. You can easily assemble this model simply by mounting the LM rail and LM blocks with bolts

[Allows Circular Motion of 5m or Longer]

It allows circular motion of 5 m or longer, which is impossible with swivel bearings.

In addition, use of this model makes it easy to assemble, disassemble and reassemble equipment that circularly moves.

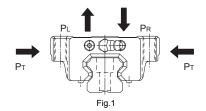
[Capable of Receiving Loads in All Directions]


This model is capable of receiving loads in all directions since it has a structure that is basically the same as model HSR

Types and Features

Model HCR

Specification Table⇒**B**1-178


The flange of its LM block has tapped holes.

Rated Loads in All Directions

Model HCR is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HCR.

Equivalent Load

When the LM block of model HCR receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

 P_E : Equivalent load (N)

: Radial direction

· Reverse radial direction

: Lateral direction

 P_R : Radial load (N) P_L : Reverse radial load (N)

 $P_{\scriptscriptstyle T}$: Lateral load (N)

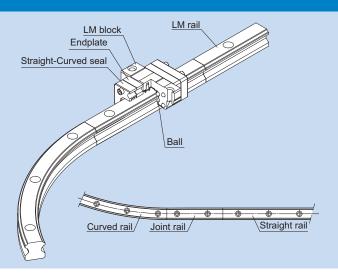
Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see **A**1-91.

Accuracy Standards


For details, see A 1-97.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see **A**1-310.

HMG

LM Guide Straight-Curved Guide Model HMG

Structure and Features	▶▶▶▲1-245
Types and Features	▶ ▶▶ ▲1-247
Rated Loads in All Directions	▶ ▶▶ ▲ 1-247
Equivalent Load	▶ ▶▶ ▲ 1-247
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-91
Accuracy Standards	▶ ▶▶ ▲1-97
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-310
Examples of Table Mechanisms	▶▶▶▲1-249
Dimensional Drawing, Dimensional Table	▶▶ ■ 1-182
Jointed LM rail, example of model number coding	▶ ▶▶■ 1-184

The Straight-Curved Guide HMG is a new straight-curved guide that allows the same type of LM blocks to continuously move on straight and curved rails by combining the technologies of the LM Guide HSR and the R Guide HCR. It achieves drastic cost reduction through improvement of work efficiency at the assembly and conveyance lines and the inspection equipment and simplification of the structure by eliminating a lift and a table.

[Freedom of Design]

It allows free combinations of straight and curved shapes.

Since LM blocks can smoothly transit between the straight and curved sections, various combinations of straight and curved rails can be joined into various shapes such as O, U, L and S shapes. In addition, HMG allows a large table to be mounted and a heavy object to be carried through combinations of multiple blocks on a single rail or 2 or more LM rails. Thus, it provides great freedom of design.

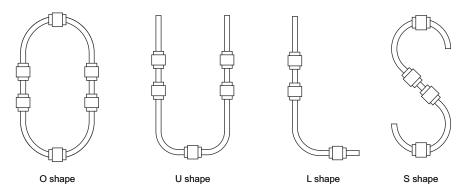


Fig.1 Examples of Joining Rails into Different Shapes

[Shortened Transportation Time]

Unlike the shuttle method, using HMG units in a circulating system allows workpieces to be placed while other workpieces are being inspected or mounted, thus to significantly improve process time. Increasing the number of tables can further shorten process time.

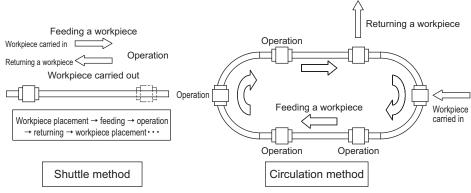
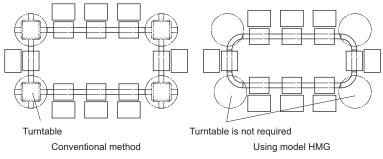
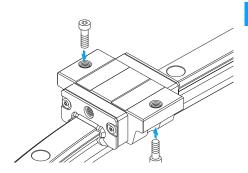


Fig.2 Improved process time

[Cost Reduction through a Simplified Mechanism]

Combination of straight and curved rails eliminates a lift and a turntable conventionally used for changing directions in the conveyance and production lines. Therefore, use of HMG simplifies the mechanism and eliminates a large number of parts, allowing the cost to be reduced. Additionally, man-hours in designing can also be reduced.

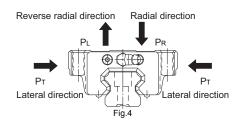



Fig.3

Types and Features

Model HMG

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom.


Specification Table⇒**B**1-182

Rated Loads in All Directions

Model HMG is capable of receiving loads in all four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HMG.

Equivalent Load

When the LM block of model HMG receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E: Equivalent load (N)

: Radial direction

· Reverse radial direction

: Lateral direction

 $\begin{array}{llll} P_{\mathbb{R}} & : \mbox{ Radial load} & (\mbox{N}) \\ P_{\mathbb{L}} & : \mbox{ Reverse radial load} & (\mbox{N}) \\ P_{\mathbb{T}} & : \mbox{ Lateral load} & (\mbox{N}) \end{array}$

Service Life

For details, see A1-76.

Radial Clearance Standard

For details, see A1-91.

Accuracy Standards

For details, see A1-97.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-310.

Examples of Table Mechanisms

The Straight-Curved Guide HMG requires a rotating mechanism or a slide mechanism for the table to rotate the curved sections when 2 or more rails are used or when 2 or more LM blocks are connected on a single rail. Refer to Fig.5 for examples of such mechanisms.

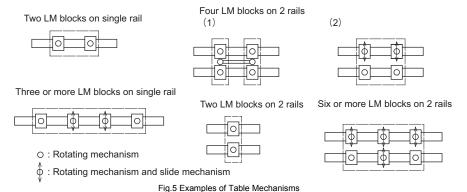
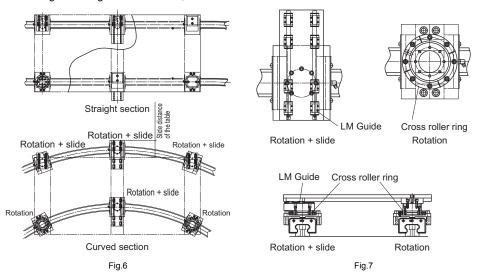
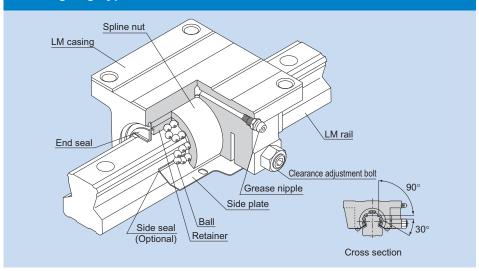



Fig.6 shows examples of designing a table when units are used on multiple axes. HMG requires a rotating mechanism and a slide mechanism since the table is decentered when an LM block transits from a straight section to a curved section. The amount of decentering differs according to the radius of the curved section and the LM block span. Therefore, it is necessary to design the system in accordance with the corresponding specifications.


Fig.7 shows detail drawings of the slide and rotating mechanisms. In the figure, LM Guides are used in the slide mechanism and Cross-Roller Rings in the rotating mechanism to achieve smooth sliding and rotating motions.

For driving the Straight-Curved Guide, belt drives and chain drives are available.

NSR-TBC

LM Guide Self-aligning Type Model NSR-TBC

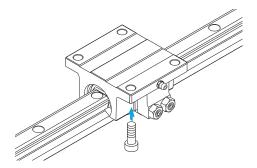
Structure and Features	▶ ▶▶ ▲1-251
Types and Features	▶▶▶▲1-251
Rated Loads in All Directions	▶▶▶▲1-252
Equivalent Load	▶▶▶▲1-252
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-91
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-308
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-316
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-319
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-188
Standard Length and Maximum Length of the LM Rail	▶ ▶▶ ■1-190

Model NSR-TBC is the only LM Guide whose casing consists of two pieces instead of a single-piece LM block. The rigid, cast iron casing contains a cylindrical spline nut that is partially cut at an angle of 120°. This enables the model to self-aligning on the fitting surface with the casing, thus to permit rough installation.

[Capable of Receiving Loads in All Directions]

NSR-TBC has four rows of balls. The balls are arranged in two rows on each shoulder of the LM rail, and can receive loads in all four directions: upward, downward and lateral directions. Due to the self-aligning structure, however, a rotational moment (M_c) cannot be applied in a single-rail configuration.

[Easy Installation and Accuracy Establishment]


Model NSR-TBC is highly capable of performing self-adjustment and self-alignment. As a result, even if two rails are not mounted with accuracy, the LM casing absorbs the error and it does not affect the traveling performance. Accordingly, the machine performance will not be deteriorated.

Types and Features

Model NSR-TBC

The flange of the LM casing has through holes, allowing the LM Guide to be mounted from the bottom.

Specification Table⇒B1-188

Rated Loads in All Directions

Model NSR-TBC is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for NSR-TBC. The values in the reverse radial and lateral directions are obtained from Table1 below.

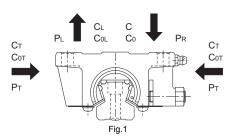


Table1 Basic Load Ratings of Model NSR-TBC in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direction	CL=0.62C	C _{0L} =0.50C ₀
Lateral directions	C _⊤ =0.56C	C _{0T} =0.43C ₀

Equivalent Load

When the LM casing of model NSR-TBC receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_L + Y \cdot P_T$

 P_E : Equivalent load (N)

: Reverse radial direction

: Lateral direction

 P_L : Reverse radial load (N) P_T : Lateral load (N) X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model NSR-TBC

PE	Х	Y
Equivalent load in reverse radial direction	1	1.155
Equivalent load in lateral direction	0.866	1

Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see A1-91.

Accuracy Standards

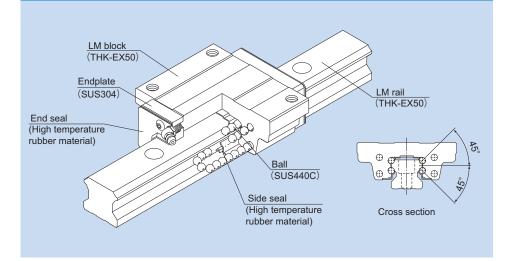
For details, see A 1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-308.

Error Allowance in the Parallelism between Two Rails

For details, see **A**1-316.


Error Allowance in Vertical Level between Two Rails

For details, see A 1-319.

HSR-M1

LM Guide

High Temperature Type Model HSR-M1

Structure and Features	▶ ▶▶ ▲1-255
Types and Features	▶▶▶▲1-257
Rated Loads in All Directions	▶▶▶▲1-259
Equivalent Load	▶▶▶▲1-259
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ ▲1-90
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-310
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-315
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-192
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-200

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.

The high temperature type LM Guide is capable of being used at service temperature up to 150 °C thanks to THK's unique technologies in material, heat treatment and lubrication.

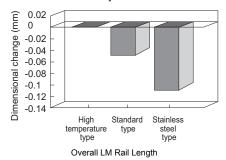
[Maximum Service Temperature: 150°C]

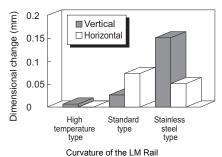
Use of stainless steel in the endplates and high temperature rubber in the end seals achieves the maximum service temperature of 150° C.

[Dimensional Stability]

Since it is dimensionally stabilized, it demonstrates superb dimensional stability after being heated or cooled (note that it shows linear expansion at high temperature).

[Highly Corrosion Resistant]

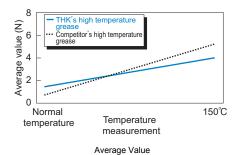

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

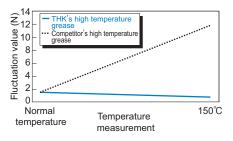

[High Temperature Grease]

This model uses high temperature grease that shows little grease-based fluctuation in rolling resistance even if temperature changes from low to high levels.

Dimensional Stability Data

Since this model has been treated for dimensional stability, its dimensional change after being cooled or heated is only minimal.




Note1) The above data on overall length and curvature indicate dimensional change when the LM rail is cooled to normal temperature after being heated at 150°C for 100 hours.

Note2) The samples consist of high temperature, standard and stainless steel types of model HSR25 + 580L.

Rolling Resistance Data in Relation to Grease

Use a high temperature grease with which the rolling resistance of the LM system little fluctuates even temperature changes from a normal to high range.

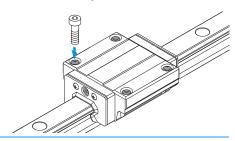
Fluctuation Value

For the measurements above, model HSR25M1R1C1 is used.

Thermal Characteristics of LM Rail and LM Block Materials

Specific heat capacity: 0.481 J/(g·K)

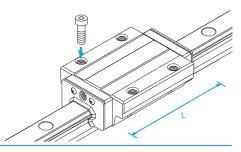
Thermal conductivity: 20.67 W/(m·K)


Average coefficient of linear expansion: 11.8×10-6/°C

Types and Features

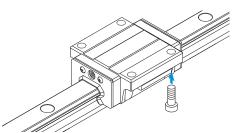
Model HSR-M1A

The flange of its LM block has tapped holes.


Specification Table⇒**B**1-192

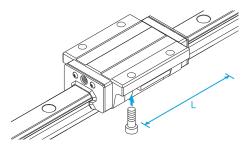
Model HSR-M1LA

The LM block has the same cross-sectional shape as model HSR-M1A, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-192

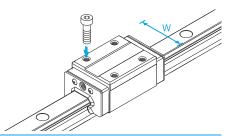
Model HSR-M1B

The flange of the LM block has through holes. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒**B**1-194

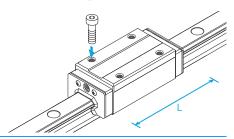
Model HSR-M1LB

The LM block has the same sectional shape as model HSR-M1B, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-194

Model HSR-M1R

With this type, the LM block has a smaller width (W) and tapped holes. Used in places where the space for table width is limited.


Specification Table⇒**B**1-196

Model HSR-M1LR

The LM block has the same sectional shape as model HSR-M1R, but has a longer overall LM block length (L) and a greater rated load.

Specification Table⇒**B**1-196

Model HSR-M1YR

When using two units of LM Guide facing each other, the previous model required much time in machining the table and had difficulty achieving the desired accuracy and adjusting the clearance. Since model HSR-M1YR has tapped holes on the side of the LM block, a simpler structure is gained and significant man-hour cutting and accuracy increase can be achieved.

Specification Table⇒**B**1-198

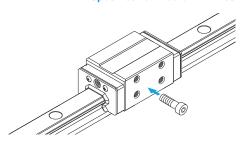


Fig.1 Conventional Structure

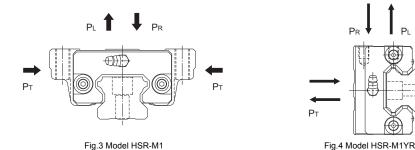


Fig.2 Mounting Structure for Model HSR-M1YR

Rated Loads in All Directions

Model HSR-M1 is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HSR-M1.

Equivalent Load

When the LM block of model HSR-M1 receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

PE	$= \mathbf{P}_{R} \left(\mathbf{P}_{L} \right) + \mathbf{P}_{T}$	
PE	: Equivalent load	(N)
	: Radial direction	
	: Reverse radial direction	
	: Lateral direction	
P_{R}	: Radial load	(N)
P_L	: Reverse radial load	(N)
P_T	: Lateral load	(N)

Service Life

When using this product in temperatures higher than 100°C, always multiply the basic dynamic load rating by the temperature coefficient when calculating the rated service life. See **\(\Delta 1-76 \)** for details.

Radial Clearance Standard

For details, see 41-90.

Accuracy Standards

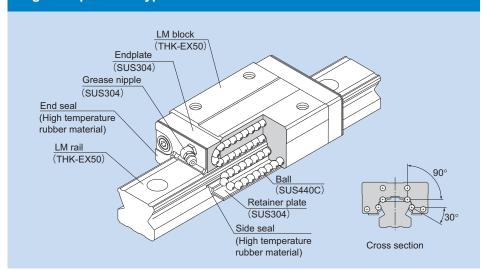
For details, see A 1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-310.

Error Allowance in the Parallelism between Two Rails

For details, see A 1-315.


Error Allowance in Vertical Level between Two Rails

For details, see A1-318.

SR-M1

LM Guide

High Temperature Type Model SR-M1

Structure and Features	▶ ▶▶ ▲1-263
Thermal Characteristics of LM Rail and LM Block Materials	▶▶▶▲1-263
Types and Features	▶▶▶▲1-264
Rated Loads in All Directions	▶▶▶▲1-265
Equivalent Load	▶▶▶ A 1-265
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶▶▶ ▲1-90
Accuracy Standards	▶▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-308
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-315
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-202
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-206

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

Since it is a compactly designed model that has a low sectional height and a ball contact structure rigid in the radial direction, this model is optimal for horizontal guide units.

High temperature type LM Guide model SR-M1 is capable of being used at service temperature up to 150°C thanks to THK's unique technologies in material, heat treatment and lubrication.

[Maximum Service Temperature: 150°C]

Use of stainless steel in the endplates and high temperature rubber in the end seals achieves the maximum service temperature of 150° C.

[Dimensional Stability]

Since it is dimensionally stabilized, it demonstrates superb dimensional stability after being heated or cooled (note that it shows linear expansion at high temperature).

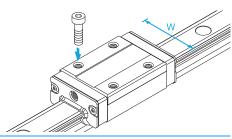
[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

[High Temperature Grease]

This model uses high temperature grease that shows little grease-based fluctuation in rolling resistance even if temperature changes from low to high levels.

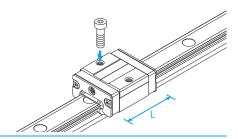
Thermal Characteristics of LM Rail and LM Block Materials


- Specific heat capacity: 0.481 J/(g·K)
- Thermal conductivity: 20.67 W/(m·K)
- Average coefficient of linear expansion: 11.8×10⁻⁶/°C

Types and Features

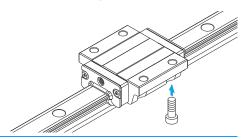
Model SR-M1W

With this type, the LM block has a smaller width (W) and tapped holes.


Specification Table⇒**B**1-202

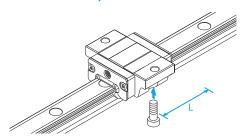
Model SR-M1V

A space-saving type whose LM block has the same cross-sectional shape as model SR-M1W, but has a smaller overall LM block length (L).


Specification Table⇒ ■1-202

Model SR-M1TB

The LM block has the same height as model SR-M1W and can be mounted from the bottom.


Specification Table⇒**B**1-204

Model SR- M1SB

A space-saving type whose LM block has the same sectional shape as model SR-M1TB, but has a smaller overall LM block length (L).

Specification Table⇒**B**1-204

Rated Loads in All Directions

Model SR-M1 is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings indicate the values in the radial directions in Fig.1, and their actual values are provided in the specification table for SR-M1. The values in the reverse radial and lateral directions are obtained from Table1 below.

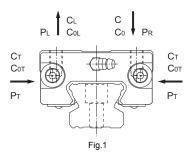


Table1 Rated Loads in All Directions with Model SR-M1

Model No.	Direction	Basic dynamic load rating	Basic static load rating
	Radial direction	С	C ₀
SR-M1 15 to 35	Reverse radial direction	CL=0.62C	C _{0L} =0.50C ₀
	Lateral directions	C₁=0.56C	Сот=0.43Со

Equivalent Load

When the LM block of model SR-M1 receives loads in the reverse radial and lateral directions simultaneously, the equivalent load is obtained from the equation below.

$$P_E = X \cdot P_L + Y \cdot P_T$$

 $P_{\scriptscriptstyle E}$: Equivalent load (N)

: Reverse radial direction

: Lateral direction

P_L : Reverse radial load (N)

P⊤ : Lateral load (N)

X, Y: Equivalent factor (see Table2)

Table2 Equivalent Factor of Model SR-M1

Model No.	PE	Х	Y
SR-M1	Equivalent load in reverse radial direction	1	1.155
15 to 35	Equivalent load in lateral direction	0.866	1

Service Life

When using this product in temperatures higher than 100°C, always multiply the basic dynamic load rating by the temperature coefficient when calculating the rated service life. See **\(\Delta 1-76 \)** for details.

Radial Clearance Standard

For details, see 41-90.

Accuracy Standards

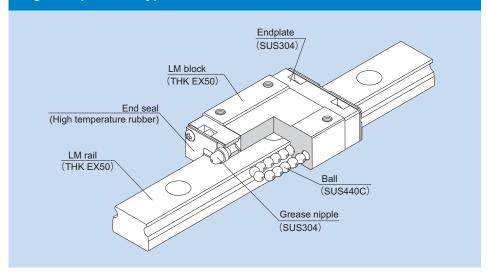
For details, see A 1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-308.

Error Allowance in the Parallelism between Two Rails

For details, see A 1-315.


Error Allowance in Vertical Level between Two Rails

For details, see A1-318.

RSR-M1

LM Guide

High Temperature Type Model RSR-M1

Structure and Features	▶ ▶▶ ▲1-269
Thermal Characteristics of LM Rail and LM Block Materials	▶ ▶▶ ▲1-269
Types and Features	▶ ▶▶ ▲1-270
Rated Loads in All Directions	▶ ▶▶ ▲1-271
Equivalent Load	▶ ▶▶ ▲ 1-271
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-90
Accuracy Standards	▶ ▶▶ ▲1-101
Shoulder Height of the Mounting Base and the Corner Radius	▶ ▶▶ ▲ 1-314
Error Allowance in the Parallelism between Two Rails	▶ ▶▶ ▲ 1-316
Error Allowance in Vertical Level between Two Rails	▶ ▶▶ ▲ 1-319
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶ ▶▶■ 1-208
Standard Length and Maximum Length of the LM Rail	▶ ▶▶■ 1-212
Stopper	▶ ▶▶■ 1-212

Structure and Features

Balls roll in two rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

High temperature type miniature LM Guide model RSR-M1 is capable of being used at service temperature up to 150°C thanks to THK's unique technologies in material, heat treatment and lubrication.

[Maximum Service Temperature: 150°C]

Use of stainless steel in the endplates and high temperature rubber in the end seals achieves the maximum service temperature of 150°C.

[Dimensional Stability]

Since it is dimensionally stabilized, it demonstrates superb dimensional stability after being heated or cooled (note that it shows linear expansion at high temperature).

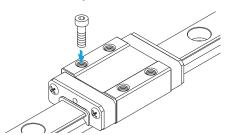
[Highly Corrosion Resistant]

Since the LM block, LM rail and balls use stainless steel, which is highly corrosion resistant, this model is optimal for clean room applications.

[High Temperature Grease]

This model uses high temperature grease that shows little grease-based fluctuation in rolling resistance even if temperature changes from low to high levels.

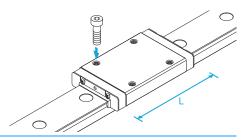
Thermal Characteristics of LM Rail and LM Block Materials


- Specific heat capacity: 0.481 J/(g·K)
- Thermal conductivity: 20.67 W/(m⋅K)
- Average coefficient of linear expansion: 11.8×10⁻⁶/°C

Types and Features

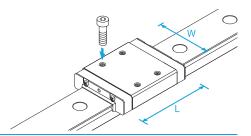
Models RSR-M1, RSR-M1K, M1V

This model is a standard type.


Specification Table⇒**B**1-208

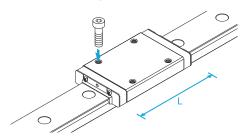
Model RSR-M1N

It has a longer overall LM block length (L) and a greater rated load than standard types.


Specification Table⇒**B**1-208

Models RSR-M1W, M1WV

These models have greater overall LM block lengths (L), broader widths (W) and greater rated loads and permissible moments than standard types.


Specification Table⇒**B**1-210

Model RSR-M1WN

It has a longer overall LM block length (L), a greater rated load than standard types. Achieves the greatest load capacity among the high temperature type miniature LM Guide models.

Specification Table⇒**B**1-210

Rated Loads in All Directions

Model RSR-M1 is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings of models RSR9M1/M1W are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for RSR-M1.

The basic load ratings of models RSR12M1 to 20M1 indicate the values in the radial direction in Fig.1, and their actual values are provided in the specification table for RSR-M1. The values in the reverse radial and lateral directions are obtained from Table1 below.

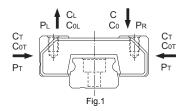


Table1 Basic Load Ratings of Models RSR12M1 to 20M1 in All Directions

Direction	Basic dynamic load rating	Basic static load rating
Radial direction	С	C ₀
Reverse radial direction	C _L =0.78C	C _{0L} =0.70C ₀
Lateral directions	C _⊤ =0.78C	Сот=0.71Со

Equivalent Load

When the LM block of models RSR9M1/M1W receives loads in all four directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

 P_E : Equivalent load (N)

: Radial direction

· Reverse radial direction

: Lateral direction

P_R : Radial load (N)

 P_{L} : Reverse radial load (N)

P_⊤ : Lateral load (N)

When the LM block of models RSR12M1 to 20M1 receives loads in the radial and lateral directions, or the reverse radial and lateral directions, simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{E} = \mathbf{X} \cdot \mathbf{P}_{R} (\mathbf{P}_{L}) + \mathbf{Y} \cdot \mathbf{P}_{T}$

P_E : Equivalent load (N)

· Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N)

PL : Reverse radial load (N)

P_⊤ : Lateral load (N)

X, Y: Equivalent factor

(see Table2 and Table3)

Table2 Equivalent Factor of Models RSR12M1 to 20M1(when radial and lateral loads are applied)

PE	X	Y
Equivalent load in the radial direction	1	0.83
Equivalent load in lateral direction	1.2	1

Table3 Equivalent Factor of Models RSR12M1 to 20M1 (when reverse radial and lateral loads are applied)

P₌	Х	Υ
Equivalent load in reverse radial direction	1	0.99
Equivalent load in lateral direction	1.01	1

Service Life

When using this product in temperatures higher than 100°C, always multiply the basic dynamic load rating by the temperature coefficient when calculating the rated service life. See **\(\Delta 1-76 \)** for details.

Radial Clearance Standard

For details, see 41-90.

Accuracy Standards

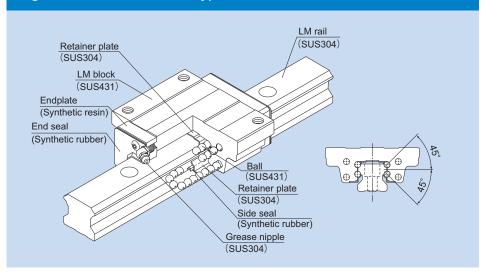
For details, see A1-101.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-314.

Error Allowance in the Parallelism between Two Rails

For details, see A1-316.


Error Allowance in Vertical Level between Two Rails

For details, see A1-319.

HSR-M2

LM Guide

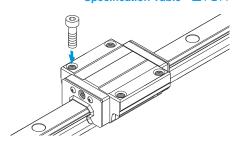
High Corrosion Resistance Type Model HSR-M2

Structure and Features	▶▶▶▲1-275
Types and Features	▶▶▶▲1-275
Rated Loads in All Directions	▶▶▶▲1-275
Equivalent Load	▶▶▶▲1-275
Service Life	▶ ▶▶ ▲1-76
Radial Clearance Standard	▶ ▶▶ ▲1-91
Accuracy Standards	▶ ▶▶ ▲1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-310
Error Allowance in the Parallelism between Two Rails	▶▶▶▲1-315
Error Allowance in Vertical Level between Two Rails	▶▶▶▲1-318
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-214
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-216

Structure and Features

Balls roll in four rows of raceways precision-ground on an LM rail and an LM block, and endplates incorporated in the LM block allow the balls to circulate.

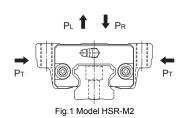
Each row of balls is placed at a contact angle of 45° so that the rated loads applied to the LM block are uniform in the four directions (radial, reverse radial and lateral directions), enabling the LM Guide to be used in all orientations.


The LM rail, LM block and balls are made of highly corrosion resistant stainless steel and the other metal parts are made of stainless steel, allowing superb corrosion resistance to be achieved. As a result, the need for surface treatment is eliminated.

Types and Features

Model HSR-M2A

The flange of its LM block has tapped holes.


Specification Table⇒**B**1-214

Rated Loads in All Directions

Model HSR-M2 is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for HSR-M2.

Equivalent Load

When the LM block of model HSR-M2 receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$\mathbf{P}_{\mathsf{E}} = \mathbf{P}_{\mathsf{R}} \left(\mathbf{P}_{\mathsf{L}} \right) + \mathbf{P}_{\mathsf{T}}$

· Lateral direction

Service Life

For details, see A1-76.

Radial Clearance Standard

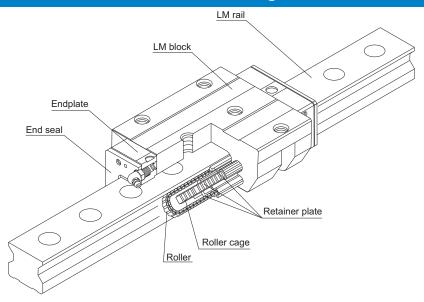
For details, see A1-91.

Accuracy Standards

For details, see A1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A1-310.

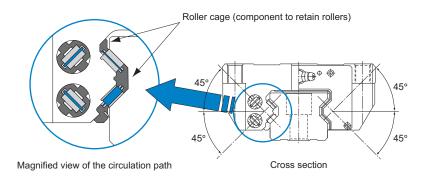

Error Allowance in the Parallelism between Two Rails

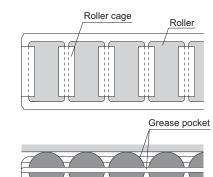
For details, see A1-315.

Error Allowance in Vertical Level between Two Rails

For details, see A1-318.

Structure and Features of the Caged Roller LM Guide

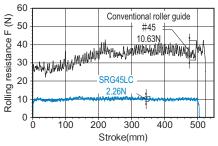



Fig.1 Structural Drawing of the Caged Roller LM Guide Model SRG

Caged Roller LM Guide is a roller guide that achieves low-friction, smooth motion and long-term maintenance-free operation by using a roller cage. In addition, to ensure ultra-high rigidity, rollers with low elastic deformation are used as the rolling elements and the roller diameter and the roller length are optimized.

Furthermore, the lines of rollers are placed at a contact angle of 45° so that the same rated load is applied in all (radial, reverse and lateral) directions.

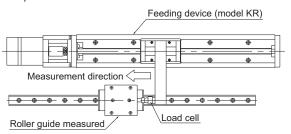
Advantages of the Caged Roller Technology


- Evenly spaced and aligned rollers circulate, preventing the rollers from skewing, minimizing rolling resistance fluctuations and achieving smooth and stable motion.
- (2) The absence of friction between rollers allows grease to be retained in grease pockets and achieves long-term maintenance-free operation.
- (3) The absence of friction between rollers achieves low heat generation and superbly high speed.
- (4) The absence of roller-to-roller collision ensures low noise and acceptable running sound

[Smooth Motion]

Rolling Resistance Data

Evenly spaced and aligned rollers circulate, minimizing rolling resistance fluctuations and achieving smooth and stable motion.



Result of Measuring Rolling Resistance Fluctuations

[Conditions]

Feeding speed: 10mm/s

Applied load: no load (one block)

Rolling Resistance Measuring Machine

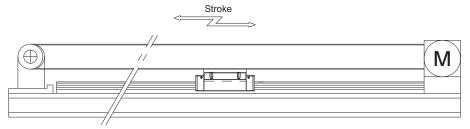
[Long-term Maintenance-free Operation]

High-speed Durability Test Data

Use of a roller cage eliminates friction between rollers, minimizes heat generation and increases grease retention, thus to achieve long-term maintenance-free operation.

[Conditions]

Model No.: SRG45LC


Magnitude of preload: clearance C0

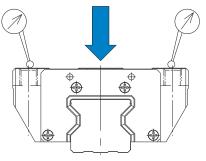
Speed: 180m/min Acceleration: 1.5G Stroke: 2300mm

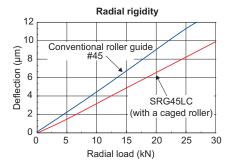
Lubrication: Initial lubrication only

(THKAFB-LF Grease)

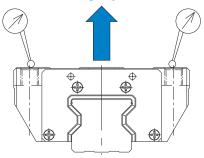
Test result: No anomaly observed after running 15,000 km

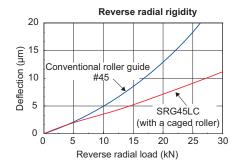
Result of High-speed Durability Test

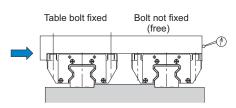

[Ultra-high Rigidity]


High Rigidity Evaluation Data

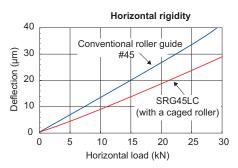
[Preload] SRG : radial clearance C0


Conventional type : radial clearance equivalent to C0


Radial rigidity



Reverse radial rigidity



Horizontal rigidity

Rigidity is measured with the two axes placed in parallel and one of the axes not fixed with a bolt in order not to apply a moment.

SRG

Caged Roller LM Guide Ultra-high Rigidity Type Model SRG

^{*} For the caged roller, see **A**1-278.

▶ ▶▶ ▲1-283
▶▶▶ A 1-284
▶ ▶▶ ▲ 1-286
▶ ▶▶ ▲ 1-286
▶ ▶▶ ▲1-76
▶▶▶ A 1-91
▶▶▶ A 1-95
▶▶▶▲1-311
▶▶▶ A 1-287
▶ ▶▶ ■1-218
▶▶▶ B 1-224

Structure and Features

SRN is an ultra-high rigidity Roller Guide that uses roller cages to allow low-friction, smooth motion and achieve long-term maintenance-free operation.

[Ultra-high Rigidity]

A higher rigidity is achieved by using highly rigid rollers as the rolling elements and having the overall roller length more than 1.5 times greater than the roller diameter.

[4-way Equal Load]

Since each row of rollers is arranged at a contact angle of 45° so that the LM block receives an equal load rating in all four directions (radial, reverse radial and lateral directions), high rigidity is ensured in all directions.

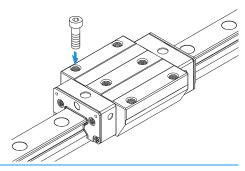
[Smooth Motion through Skewing Prevention]

The roller cage allows rollers to form an evenly spaced line while circulating, thus preventing the rollers from skewing as the block enters an loaded area. As a result, fluctuation of the rolling resistance is minimized, and stable, smooth motion is achieved.

[Long-term Maintenance-free Operation]

Use of roller cages eliminates friction between rollers and increases grease retention, enabling long-term maintenance-free operation to be achieved.

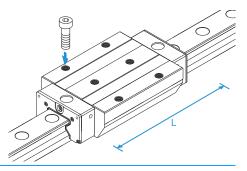
[Global Standard Size]


SRG is designed to have dimensions almost the same as that of Full Ball LM Guide model HSR, which THK as a pioneer of the linear motion system has developed and is practically a global standard size.

Types and Features

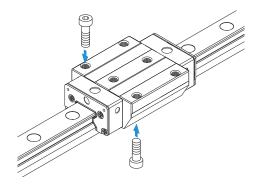
Models SRG-15A, 20A

The flange of the LM block has tapped holes. Can be mounted from the top or the bottom.


Specification Table⇒**B**1-218

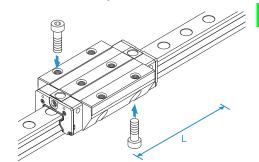
Model SRG-20LA

The LM block has the same cross-sectional shape as model SRG-A, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-218

Model SRG-C

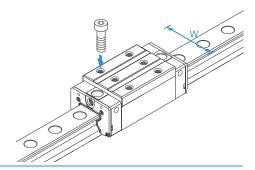
The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒**B**1-218

Specification Table⇒**B**1-218

Model SRG-LC

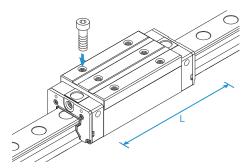
The LM block has the same cross-sectional shape as model SRG-C, but has a longer overall LM block length (L) and a greater rated load.



Model SRG-R

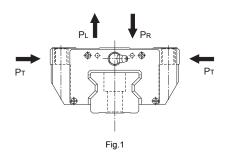
With this type, the LM block has a smaller width (W) and tapped holes.

Used in places where the space for table width is limited.


Specification Table⇒**B**1-222

Model SRG-LR

The LM block has the same cross-sectional shape as model SRG-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒**B**1-222

Rated Loads in All Directions

Model SRG is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SRG.

Equivalent Load

When the LM block of model SRG receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \, load & (N) \\ P_{L} & : Reverse \, radial \, load & (N) \\ P_{T} & : Lateral \, load & (N) \end{array}$

Service Life

For details, see A 1-76.

Radial Clearance Standard

For details, see A1-91.

Accuracy Standards

For details, see A1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A 1-311.

Error Allowance of the Mounting Surface

The caged roller LM Guide Model SRG features high rigidity since it uses rollers as its rolling element and it also features a cage-retainer which prevents the rollers from skewing. However, high machining accuracy is required in the mounting surface. If the error on the mounting surface is large, it will affect the rolling resistance and the service life. The following shows the maximum permissible value according to the radial clearance.

Table1 Error Allowance in Parallelism (P) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0
Model No.	Noma	O1	Co
SRG 15	0.005	0.003	0.003
SRG 20	0.008	0.006	0.004
SRG 25	0.009	0.007	0.005
SRG 30	0.011	0.008	0.006
SRG 35	0.014	0.010	0.007
SRG 45	0.017	0.013	0.009
SRG 55	0.021	0.014	0.011
SRG 65	0.027	0.018	0.014
SRG 85	0.040	0.027	0.021
SRG 100	0.045	0.031	0.024

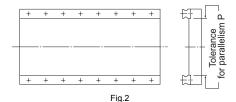


Table2 Error Allowance in Vertical Level (X) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0
Permissible error on the mounting surface X	0.00030a	0.00021a	0.00011a

Example of calculation

Rail span whe

when a = 500 mm $X = 0.0003 \times 500$ = 0.15

Permissible error on the mounting surface

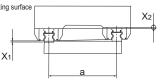


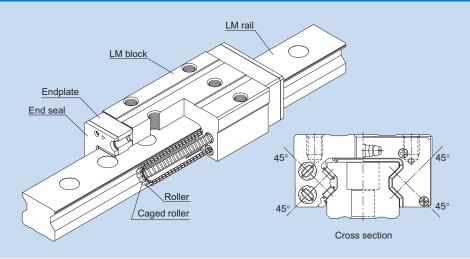
Fig.3

Table3 Error Allowance in Level (Y) in the Axial Direction

Unit: mm

Y

Fig.4



0.000036b

SRN

Caged Roller LM Guide Ultra-high Rigidity Type (Low Center of Gravity) Model SRN

^{*} For the caged roller, see **A**1-278.

Structure and Features	▶ ▶▶ ▲1-289
Types and Features	▶▶▶ A1-290
Rated Loads in All Directions	▶▶▶ A 1-291
Equivalent Load	▶▶▶ A 1-291
Service Life	▶▶▶ △ 1-76
Radial Clearance Standard	▶▶▶ △ 1-91
Accuracy Standards	▶▶▶ △ 1-95
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶ A 1-311
Error Allowance of the Mounting Surface	▶▶▶ A 1-292
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-226
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-230

Structure and Features

SRN is an ultra-high rigidity Roller Guide that uses roller cages to allow low-friction, smooth motion and achieve long-term maintenance-free operation.

[Ultra-high Rigidity]

A higher rigidity is achieved by using highly rigid rollers as the rolling elements and having the overall roller length more than 1.5 times greater than the roller diameter.

[4-way Equal Load]

Since each row of rollers is arranged at a contact angle of 45° so that the LM block receives an equal load rating in all directions (radial, reverse radial and lateral directions), high rigidity is ensured in all directions.

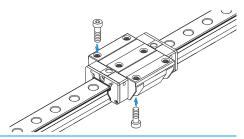
[Smooth Motion through Skewing Prevention]

The roller cage allows rollers to form an evenly spaced line while circulating, thus preventing the rollers from skewing as the block enters an loaded area. As a result, fluctuation of the rolling resistance is minimized, and stable, smooth motion is achieved.

[Long-term Maintenance-free Operation]

Use of roller cages eliminates friction between rollers and increases grease retention, enabling long-term maintenance-free operation to be achieved.

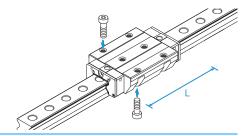
[Low-Profile Low Center of Gravity]


Because it has a lower total height than the Caged Roller LM Guide Model SRG, it is ideal for compact designs.

Types and Features

Model SRN-C

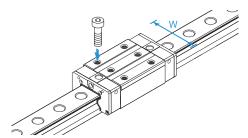
The flange of the LM block has tapped holes. Can be mounted from the top or the bottom. Used in places where the table cannot have through holes for mounting bolts.


Specification Table⇒■1-226

Model SRN-LC

The LM block has the same cross-sectional shape as model SRN-C, but has a longer overall LM block length (L) and a greater rated load.

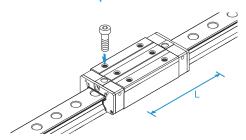
Specification Table⇒B1-226



Model SRN-R

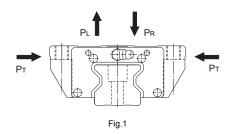
With this type, the LM block has a smaller width (W) and tapped holes.

Used in places where the space for table width is limited.


Specification Table⇒**B**1-228

Model SRN-LR

The LM block has the same cross-sectional shape as model SRN-R, but has a longer overall LM block length (L) and a greater rated load.


Specification Table⇒B1-228

Rated Loads in All Directions

Model SRN is capable of receiving loads in four directions: radial, reverse radial and lateral directions

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table for SRN.

Equivalent Load

When the LM block of model SRN receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$P_E = P_R (P_L) + P_T$

P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 P_R : Radial load (N)

P_L : Reverse radial load (N)

P_⊤ : Lateral load (N)

Service Life

For details see A 1-76.

Radial Clearance Standard

For details, see A1-91.

Accuracy Standards

For details, see A 1-95.

Shoulder Height of the Mounting Base and the Corner Radius

For details.see A1-311.

Error Allowance of the Mounting Surface

The caged roller LM Guide Model SRG features high rigidity since it uses rollers as its rolling element and it also features a cage which prevents the rollers from skewing. However, high machining accuracy is required in the mounting surface. If the error on the mounting surface is large, it will affect the rolling resistance and the service life. The following shows the maximum permissible value according to the radial clearance.

Table1 Error Allowance in Parallelism (P) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0	
Model No.	Nomai	O1	00	
SRN 35	0.014	0.010	0.007	
SRN 45	0.017	0.013	0.009	
SRN 55	0.021	0.014	0.011	
SRN 65	0.027	0.018	0.014	

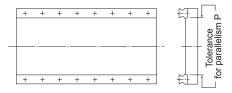


Fig.2

Table2 Error Allowance in Vertical Level (X) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0
Permissible error on the mounting surface X	0.00030a	0/00021a	0.00011a

X=X1+X2 X1: Level difference on the rail mounting surface

X2 : Level difference on the block mounting surface

Example of calculation

Rail span when a = 500mm

Error allowance of the mounting surface $X = 0.0003 \times 500$ = 0.15

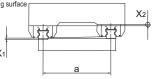


Fig.3

Table3 Error Allowance in Level (Y) in the Axial Direction

Permissible error on the mounting surface	0.000036b

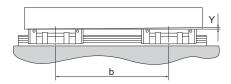
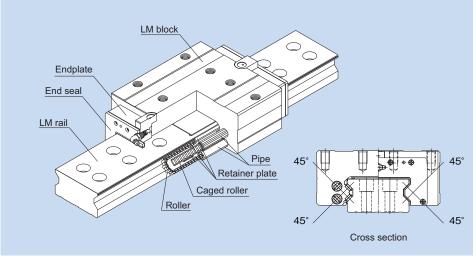



Fig.4

SRW

Caged Roller LM Guide Ultra-high Rigidity Type (Wide) Model SRW

^{*} For the caged roller, see **A**1-278.

Structure and Features	▶ ▶▶ ▲1-295
Types and Features	▶ ▶▶ ▲1-296
Rated Loads in All Directions	▶▶▶▲1-296
Equivalent Load	▶ ▶▶ ▲1-297
Service Life	▶ ▶▶ ▲1-76
Radial Clearance	▶▶▶ A 1-91
Accuracy Standards	▶▶▶▲1-103
Shoulder Height of the Mounting Base and the Corner Radius	▶▶▶▲1-311
Permissible Error of the Mounting Surface	▶ ▶▶ ▲1-298
Dimensional Drawing, Dimensional Table, Example of Model Number Coding	▶▶▶ B 1-232
Standard Length and Maximum Length of the LM Rail	▶▶▶ B 1-234

Structure and Features

Based on Caged Roller LM Guide model SRG, this model has a wider rail and two rows of LM rail mounting holes to achieve high mounting strength and mounting stability. SRW is an ultra-high rigidity Roller Guide that uses roller cages to allow low-friction, smooth motion and achieve long-term maintenance-free operation.

[Ultra-high Rigidity]

Since it has a wide rail and can be secured on the table using two rows of mounting bolts, the mounting strength is significantly increased. In addition, since the crosswise raceway distance (L) is large, model SRW is structurally strong against a moment load (Mc moment) in the rolling direction.

Furthermore, model SRW uses rollers that show little elastic deformation as its rolling elements, and the overall length of each roller is 1.5 times greater than the diameter, thus to increase the rigidity.

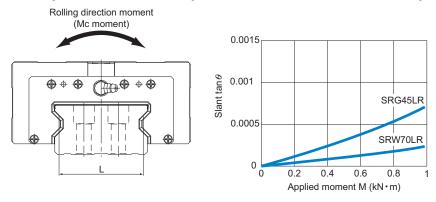


Fig.1 Result of Comparison between Models SRW and SRG in Moment Rigidity in the Rolling Direction (Mc Moment)

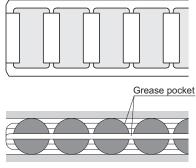
Fig.2 Comparison between Models SRW and SRG in Cross Section

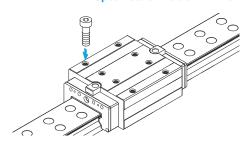
[Smoothness Achieved through Skewing Prevention]

The roller cage allows rollers to form an evenly spaced line while circulating, thus preventing the rollers from skewing as the block enters an loaded area. As a result, fluctuation of the rolling resistance is minimized, and stable, smooth motion is achieved.

[Long-term Maintenance-free Operation]

Use of the roller cage eliminates friction between rollers and enables the lubricant to be retained in grease pockets formed between adjacent rollers. As the rollers circulate, the grease pocket serves to provide the required amount of lubricant to the contact curvature of the spacer and the roller, thus to achieve long-term maintenance-free operation.

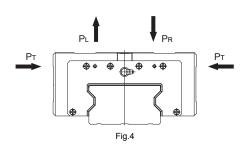



Fig.3

Types and Features

Model SRW-LR

The LM block has tapped holes.


Specification Table⇒**B**1-232

Rated Loads in All Directions

Model SRW is capable of receiving loads in four directions: radial, reverse radial and lateral directions.

The basic load ratings are uniform in the four directions (radial, reverse radial and lateral directions), and their actual values are provided in the specification table.

Equivalent Load

When the LM block of model SRW receives loads in all directions simultaneously, the equivalent load is obtained from the equation below.

$$\mathbf{P}_{\mathsf{E}} = \mathbf{P}_{\mathsf{R}} \left(\mathbf{P}_{\mathsf{L}} \right) + \mathbf{P}_{\mathsf{T}}$$

 P_E : Equivalent load (N)

: Radial direction

: Reverse radial direction

: Lateral direction

 $\begin{array}{lll} P_{\mathbb{R}} & : Radial \ load & (N) \\ P_{L} & : Reverse \ radial \ load & (N) \\ P_{T} & : Lateral \ load & (N) \end{array}$

Service Life

For details, see A1-76.

Radial Clearance

For details, see A1-91.

Accuracy Standards

For details, see A 1-103.

Shoulder Height of the Mounting Base and the Corner Radius

For details, see A 1-311.

Permissible Error of the Mounting Surface

The Caged Roller LM Guide Model SRW features high rigidity since the raceway is made up of rollers, preventing roller skew due to the roller cage. However, high machining accuracy is required in the mounting surface. If the error on the mounting surface is large, it will affect the rolling resistance and the service life. The following shows the maximum permissible value (limit value) according to the radial clearance.

Table1 Error in Parallelism (P) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0
Model No.	Noma		
SRW 70	0.013	0.009	0.007
SRW 85	0.016	0.011	0.008
SRW 100	0.020	0.014	0.011
SRW 130	0.026	0.018	0.014
SRW 150	0.030	0.021	0.016

Table2 Error in Level (X) between Two Rails

Unit: mm

Radial clearance	Normal	C1	C0
Accuracy of the mounting surface X	0.00020a	0.00014a	0.000072a

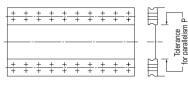


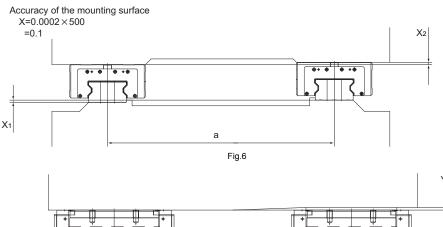
Fig.5

Table3 Error in Level (Y) in the Axial Direction

Unit: mm

mounting surface

$X=X_1+X_2$

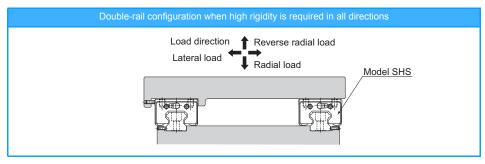

X₁: Level difference on the rail mounting surface

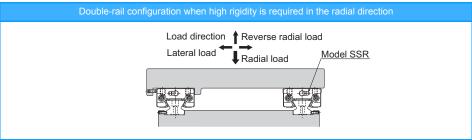
X₂: Level difference on the block mounting surface

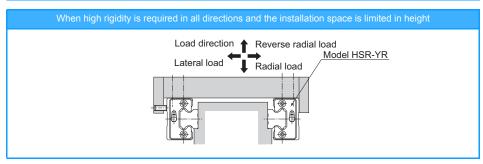
Example of calculation

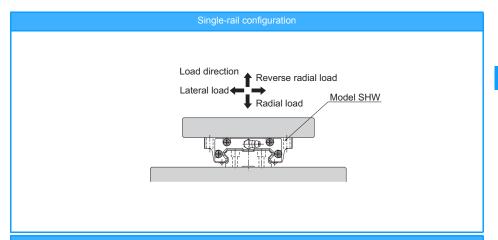
When the rail span:

a=500mm

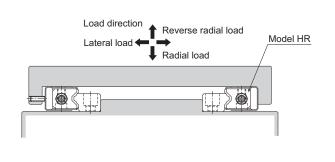

b Fig.7

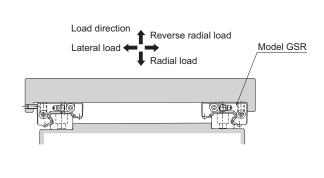

Designing the Guide System

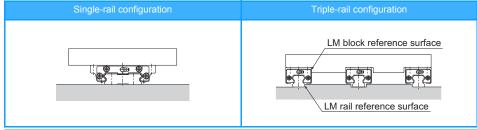

THK offers various types of LM Guides in order to meet diversified conditions. Supporting ordinary horizontal mount, vertical mount, inverted mount, slant mount, wall mount and single-axis mount, the wide array of LM Guide types makes it easy to achieve a linear guide system with a long service life and high rigidity while minimizing the required space for installation.

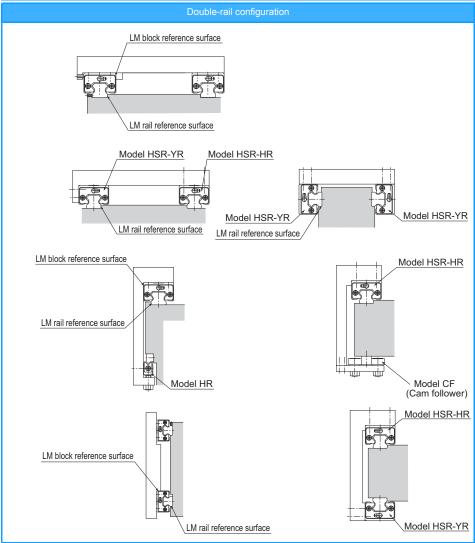

Examples of Arrangements of the Guide System

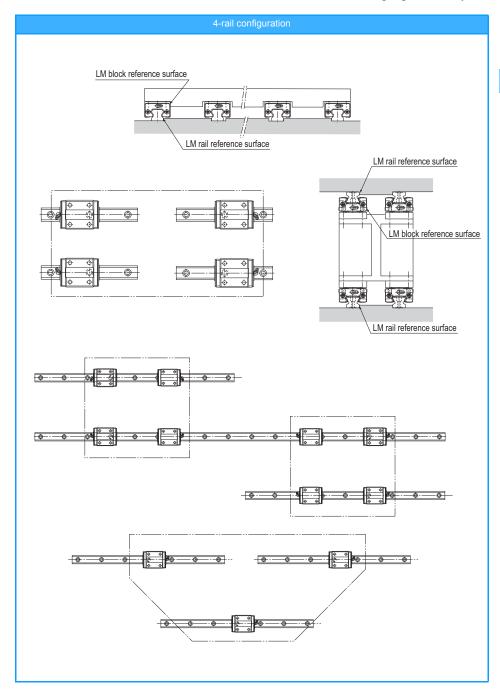
The following are representative guide systems and arrangements when installing the LM Guide. (For indication of the reference surface, see **\Bartimeta1-320.**)



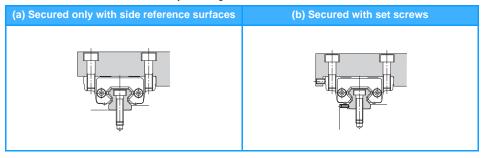


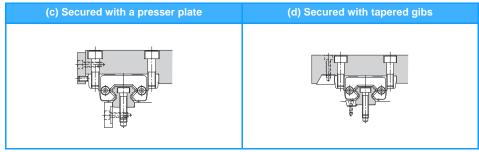






When a medium load is applied and the mounting surface is rough (Preload, self-adjusting type)




Method for Securing an LM Guide to Meet the Conditions

LM Guides are categorized into groups of types by mounting space and structure: a group of types to be mounted with bolts from the top, and another of types to be mounted from the bottom. LM rails are also divided into types secured with bolts and those secured with clamps (model JR). This wide array of types allows you to make a choice according to the application.

There are several ways of mounting the LM Guide as shown in Table1. When the machine is subject to vibrations that may cause the LM rail(s) or LM blocks to loosen, we recommend the securing method indicated by Fig.1 on ▲1-305. (If 2 or more rails are used in parallel, only the LM block on the master rail should be secured in the crosswise direction.) If this method is not applicable for a structural reason, hammer in knock pins to secure the LM block(s) as shown in Table2 on ▲1-305 When using knock pins, machine the top/bottom surfaces of the LM rail by 2 to 3 mm using a carbide end mill before drilling the holes since the surfaces are hardened.

Table1 Major Securing Methods on the Master-rail Side

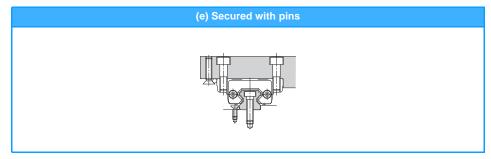
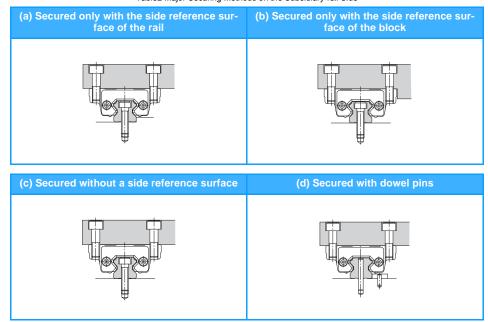



Table2 Major Securing Methods on the Subsidiary-rail Side

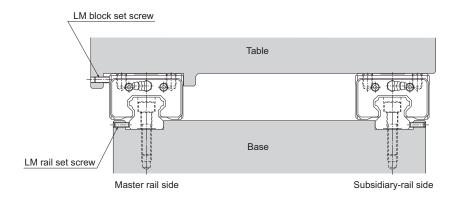
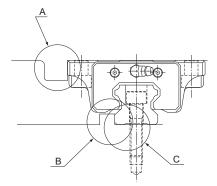
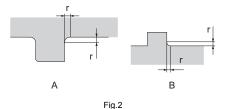



Fig.1 When the Machine Receives Vibrations or Impact

Designing a Mounting Surface

Designing a Mounting Surface

If particularly high accuracy is required for the machine to which an LM Guide is to be mounted, it is necessary to mount the LM rail with high accuracy. To achieve the desired accuracy, be sure to design the mounting surface while taking the following points into account.



[Corner Shape]

If the corner on the surface on which the LM rail or LM block is to be mounted is machined to be shaped R, which is greater than the chamfer dimension of the LM rail or LM block, then the rail or the block may not closely contact its reference surface. Therefore, when designing a mounting surface, it is important to carefully read the description on the "corner shape" of the subject model . (Fig.2)

[Perpendicularity with the Reference Surface]

If the perpendicularity between the base mounting surface for the LM rail or the LM block and the reference surface is not accurate, the rail or the block may not closely contact the reference surface. Therefore, it is important to take into account an error of the perpendicularity between the mounting surface and the reference surface. (Fig.3)

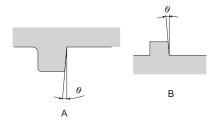


Fig.3

[Dimensions of the Reference Surface]

When designing the reference surface, be sure to take into account the height and the thickness of the datum area. If the datum area is too high, it may interfere with the LM block. If it is too low, the LM rail or the LM block may not closely contact the reference-surface depending on the chamfer of the rail or the block. Additionally, if the datum area is too thin, the desired accuracy may not be obtained due to poor rigidity of the datum area when a lateral load is applied or when performing positioning using a lateral mounting bolt. (Fig.4)

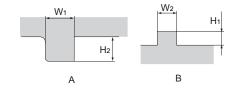


Fig.4

[Dimensional Tolerance between the Reference Surface and the Mounting Hole]

If the dimensional tolerance between the reference surface of the LM rail or the LM block and the mounting hole is too large, the rail or the block may not closely contact the reference surface when mounted on the base.

Normally, the tolerance should be within ± 0.1 mm depending on the model. (Fig.5)

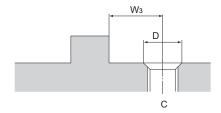


Fig.5

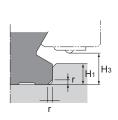
[Chamfer of the Tapped Mounting Hole]

To mount the LM rail, the mounting surface needs to be tapped and the tapped hole has to be chamfered. If the chamfer of the tapped hole is too large or too small, it may affect the accuracy. (Fig.6)

Guidelines for the chamfer dimension:

Chamfer diameter D = nominal diameter of the bolt + pitch

Example: Chamfer diameter D with M6 (pitch):


D = 6 + 1 = 7

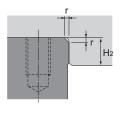


Fig.6

Shoulder Height of the Mounting Base and the Corner Radius

Normally, the mounting base for the LM rail and the LM block has a reference-surface on the side face of the shoulder of the base in order to allow easy installation and highly accurate positioning. The height of the datum shoulder varies with model numbers. See 🔼 1-308 to 🔼 1-314 for details. The corner of the mounting shoulder must be machined to have a recess, or machined to be smaller than the corner radius "r," to prevent interference with the chamfer of the LM rail or the LM block. The corner radius varies with model numbers. See 🔼 1-308 to 🔼 1-314 for details.

Shoulder for the LM Rail

Shoulder for the LM Block (LM casing)

Fig.7

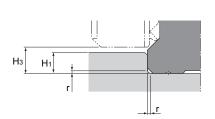
[Model SR, SR-M1]

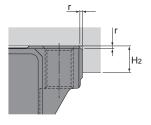
Unit: mm

[Model CSR]	
	Unit: mm

Model No.	Corner	Shoulder height for the LM rail	Maximum shoulder height for the LM block	
	r(max)	H₁	H ₂	Н₃
15	0.5	3.8	4	4.5
20	0.5	5	5	6
25	1	5.5	5	7
30	1	8	6	9.5
35	1	9	6	11.5
45	1	10	8	12.5
55	1.5	11	8	13.5
70	1.5	12	10	15
85	1.2	8	12	18.5
100	1.2	10	15	19
120	1.2	12	20	15
150	1.2	12	20	22

[Model JR]


Unit: mm


Model No.	Corner radius r(max)	Shoulder height for the LM block H ₂
25	1	5
35	1	6
45	1	8
55	1.5	10

Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	Н₃
15	0.5	3	3.5
20	0.5	3.5	4
25	1	5	5.5
30	1	5	7
35	1	6	7.5
45	1	8	10

[Model NSR-TBC]

Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	Н₃
20	1	5	5	5.5
25	1	6	6	6.5
30	1	7	6	9
40	1	7	8	10.5
50	1	7	8	8
70	1	7	10	9.5

Shoulder for the LM Rail

Shoulder for the LM Block

Fig.8

[Model SHS]

Unit: mm

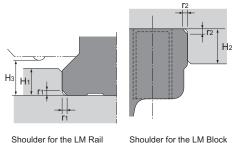
חווו. ווווו

Model No.	Corner radius r(max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	Н₃
15	0.5	2.5	4	3
20	0.5	3.5	5	4.6
25	1	5	5	5.8
30	1	5	5	7
35	1	6	6	7.5
45	1	7.5	8	8.9
55	1.5	10	10	12.7
65	1.5	15	10	19

[Model SCR]

	mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	Н₃
15	0.5	2.5	3
20	0.5	3.5	4.6
25	1	5	5.8
30	1	5	7
35	1	6	7.5
45	1	7.5	8.9
65	1.5	15	19


$[{\tt Models\ SNR/SNS}, {\tt SNR/SNS-H\ and\ NR/NRS}]$

Unit: mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	Н₃
25X	0.5	4	5	5.5
30	1	5	5	7
35	1	6	6	9
45	1	8	8	11.5
55	1.5	10	10	14
65	1.5	10	10	15
75	1.5	12	12	15
85	1.5	14	14	17
100	2	16	16	20

[Model MX]

Model No.	Corner radius for the LM rail r(max)	Shoulder height for the LM rail H ₁	Н₃
5	0.1	1.2	1.5
7W	0.1	1.7	2

Shoulder for the LM Block

Fig.9

[Model HSR, HSR-M1 and HSR-M2]

Unit: mm

Model No.	Corner radius for the LM rail	Corner radius for the LM block		Shoulder height for the LM block	
	r₁(max)	r ₂ (max)	H₁	H ₂	Н₃
8	0.3	0.5	1.6	6	2.1
10	0.3	0.5	1.7	5	2.2
12	0.8	0.5	2.6	4	3.1
15	0.5	0.5	3	4	4.7
20	0.5	0.5	3.5	5	4
25	1	1	5	5	5.5
30	1	1	5	5	7
35	1	1	6	6	7.5
45	1	1	8	8	10
55	1.5	1.5	10	10	13
65	1.5	1.5	10	10	14
85	1.5	1.5	12	14	16
100	2	2	16	16	20.5
120	2.5	2.5	17	18	20
150	2.5	2.5	20	20	22.5

[Models HCR and HMG]

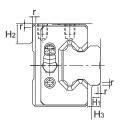
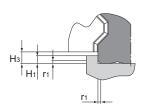
Unit: mm

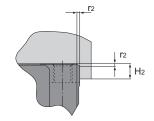
Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail H ₁	Maximum shoulder height for the LM block H ₂	Н₃
12	0.8	0.5	2.6	6	3.1
15	0.5	0.5	3	4	3.5
25	1	1	5	5	5.5
35	1	1	6	6	7.5
45	1	1	8	8	10
65	1.5	1.5	10	10	14

[Model EPF]

Unit: mm

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)		Maximum shoulder height for the LM block H ₂	Н₃
7M	0.2	0.4	1	3	1.5
9M	0.2	0.6	1	5	1.5
12M	0.5	0.6	1.5	6	2
15M	0.5	0.8	2.5	6.8	3


Fig.10

[Model HSR-YR]

Model No.	Corner radius r(max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	Н₃
15	0.5	3	4	3.5
20	0.5	3.5	5	4
25	1	5	5	5.5
30	1	5	5	7
35	1	6	6	7.5
45	1	8	8	10
55	1.5	10	10	13
65	1.5	10	10	14

Shoulder for the LM Rail

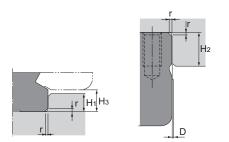
Shoulder for the LM Block

Fig.11

[Model SRG]

				Unit: mm
Corner	Corner	Shoulder	Shoulder	

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	Н₃
15	0.5	0.5	2.5	4	3.0
20	0.5	0.5	3.5	5	4.6
25	1	1	4	5	4.5
30	1	1	4.5	5	5
35	1	1	5	6	6
45	1.5	1.5	6	8	8
55	1.5	1.5	8	10	10
65	1.5	2	9	10	11.5
85	1.5	1.5	12	14	16
100	2	2	12	16	16


[Model SRN]

Unit: mm

Model No.	the LM rail	Corner radius for the LM block r ₂ (max)		Shoulder height for the LM block H ₂	Н₃
35	1	1	5	6	6
45	1.5	1.5	6	8	7
55	1.5	1.5	8	10	10
65	1.5	2	8	10	10

[Model SRW]

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	Н₃
70	1.5	1.5	6	8	8
85	1.5	1.5	8	10	10
100	1.5	2	9	10	11.5
130	1.5	1.5	12	14	16
150	2	2	12	16	16

Shoulder for the LM Rail

Shoulder for the LM Block

H3 H1 F

Fig.13

Shoulder for the LM Rail

Shoulder for the LM Block

Fig.12

[Model SSR]

Unit: mm

m

[Models SHW and HRW]

Unit: mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	Maximum shoulder height for the LM block H ₂	Н₃	D
15 X	0.5	3.8	5.5	4.5	0.3
20 X	0.5	5	7.5	6	0.3
25 X	1	5.5	8	6.8	0.4
30 X	1	8	11.5	9.5	0.4
35 X	1	9	16	11.5	0.4

Note) When closely contacting the LM block with the datum shoulder, the resin layer may stick out from the overall width of the LM block by the dimension D. To avoid this, machine the datum shoulder to have a recess or limit the datum shoulder's height below the dimension Hs

Model No.	Corner radius r(max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	Н₃
12	0.5	1.5	4	2
14	0.5	1.5	5	2
17	0.4	2	4	2.5
21	0.4	2.5	5	3
27	0.4	2.5	5	3
35	0.8	3.5	5	4
50	0.8	3	6	3.4
60	1	5	8	6.5

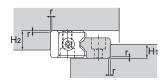
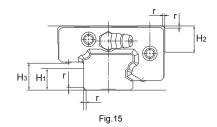



Fig.14

[Model HR]

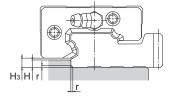
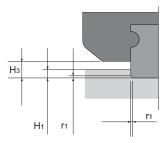
Unit: mm

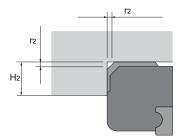
Model	Corner radius	Shoulder height for the LM rail	Shoulder height for the LM block
No.	r(max)	H₁	H₂
918	0.3	5	6
1123	0.5	6	7
1530	0.5	8	10
2042	0.5	11	15
2555	1	13	18
3065	1	16	20
3575	1	18	26
4085	1.5	21	30
50105	1.5	26	32
60125	1.5	31	40

[Model GSR]

Unit: mm

Model No.	Corner radius r(max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	Нз
15	0.6	7	7	8
20	0.8	9	8	10.4
25	0.8	11	11	13.2
30	1.2	11	13	15
35	1.2	13	14	17.5


Fig.16

[Model GSR-R]

Model	Corner radius	Shoulder height for the LM rail	
No.	r(max)	Н	Н₃
25	0.8	4	4.5
30	1.2	4	4.5
35	1.2	4.5	5.5

Shoulder for the LM Rail

Shoulder for the LM Block

Fig.17

[Model SRS]

Unit: mm

[Model RSR, RSR-M1 and RSH]

Unit: mm

Model No.	Corner radius for the LM rail	Corner radius for the LM block	Shoulder height for the LM rail	Shoulder height for the LM block	
	r ₁ (max)	r ₂ (max)	H ₁	H ₂	H₃
5M	0.1	0.3	1.2	2	1.5
5WM	0.1	0.2	1.2	2.5	1.5
7 M	0.1	0.2	0.9	3.3	1.3
7 WM	0.1	0.1	1.4	3.8	1.8
9 M/N	0.1	0.3	0.5	4.9	0.9
9 WM/WN	0.1	0.5	2.5	4.9	2.9
12 M/N	0.3	0.2	1.5	5.7	2
12 WM/WN	0.3	0.3	2.5	5.7	3
15 M/N	0.3	0.4	2.2	6.5	2.7
15 WM/WN	0.3	0.3	2.2	6.5	2.7
20 M	0.3	0.5	3	8.7	3.4
25 M	0.5	0.5	4.5	10.5	5

[Models RSR-Z and RSH-Z]

Model No.	Corner radius for the LM rail r ₁ (max)	Corner radius for the LM block r ₂ (max)	Shoulder height for the LM rail	Shoulder height for the LM block H ₂	Н₃
	, ,	,			
7 Z	0.1	0.5	1.2	3	1.5
9 Z	0.3	0.5	1.9	3	2.2
12 Z	0.3	0.3	2.1	4	2.4
15 Z	0.3	0.3	2.5	5	3.4
7 WZ	0.1	0.1	1.7	3	2
9 WZ	0.1	0.1	2.5	3	2.9
12 WZ	0.3	0.3	3	4	3.4
15 WZ	0.3	0.3	3	5	3.4

Model No.	Corner radius for the LM rail	Corner radius for the LM block	Shoulder height for the LM rail	Shoulder height for the LM block	
	r ₁ (max)	r ₂ (max)	H₁	H ₂	Н₃
3	0.1	0.3	0.8	1.2	1
5	0.1	0.3	1.2	2	1.5
7	0.1	0.5	1.2	3	1.5
9	0.3	0.5	1.9	3	2.2
12	0.3	0.3	1.4	4	3
15	0.3	0.3	2.3	5	4
20	0.5	0.5	5.5	5	7.5
3 W	0.1	0.3	0.7	2	1
5 W	0.1	0.3	1.2	2	1.5
7 W	0.1	0.1	1.7	3	2
9 W	0.1	0.1	3.9	3	4.2
12 W	0.3	0.3	3.7	4	4
14 W	0.3	0.3	3.2	5	3.5
15 W	0.3	0.3	3.7	5	4

Permissible Error of the Mounting Surface

The LM Guide allows smooth straight motion through its self-aligning capability even when there is a slight distortion or error on the mounting surface.

[Error Allowance in the Parallelism between Two Rails]

The following tables show error allowances in parallelism between two rails that will not affect the service life in normal operation.

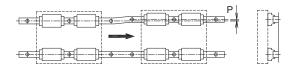


Fig.18 Error Allowance in Parallelism (P) between Two Rails

[Models SHS, HSR, CSR, HSR-M1, and HSR-M2] [Models SHS, HSR, CSR, HSR-M1, and HSR-M2]

Unit: µm

[Model SSR, SR, SR-M1]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
8	_	10	13
10	1	12	16
12	_	15	20
15	_	18	25
20	18	20	25
25	20	22	30
30	27	30	40
35	30	35	50
45	35	40	60
55	45	50	70
65	55	60	80
85	70	75	90
100	85	90	100
120	100	110	120
150	115	130	140

[Model JR]

Unit: µm

Model No.	_
25	100
35	200
45	300
55	400

Model No.	Clearance C0	Clearance C1	Normal clearance
15	_	25	35
20	25	30	40
25	30	35	50
30	35	40	60
35	45	50	70
45	55	60	80
55	65	70	100
70	65	80	110
85	80	90	120
100	90	100	130
120	100	110	140
150	110	120	150

[Models SNR, SNR-H and NR]

Unit: $\mu\,m$

Model No.	Clearance C0	Clearance C1	Normal clearance
25	14	15	21
30	19	21	28
35	21	25	35
45	25	28	42
55	32	35	49
65	39	42	56
75	44	47	60
85	49	53	63
100	60	63	70

[Models SNS, SNS-H and NRS]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
25	10	11	15
30	14	15	20
35	15	18	25
45	18	20	30
55	23	25	35
65	28	30	40
75	31	34	43
85	35	38	45
100	43	45	50

[Models SHW and HRW]

Unit: μm

Model No.	Clearance C0	Clearance C1	Normal clearance
12	_	10	13
14	_	12	16
17	_	15	20
21	_	18	25
27	_	20	25
35	20	22	30
50	27	30	40
60	30	35	50

[Models SRS, RSR, RSR-W, RSR-Z, RSH, RSH-Z and RSR-M1]

Unit: µm

Model	Gothic-arch groove		Circular-arc groove
No.	Clearance C1	Normal clearance	Normal clearance
3	_	2	_
5	_	2	_
7	_	3	_
9	3	4	11
12	5	9	15
14	6	10	_
15	6	10	18
20	8	13	25
25	10	15	30

[Model HR]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
918	_	7	10
1123	_	8	14
1530	_	12	18
2042	14	15	20
2555	20	24	35
3065	22	26	38
3575	24	28	42
4085	30	35	50
50105	38	42	55
60125	50	55	65

[Models GSR and GSR-R]

Unit: µm

Model No.	-
15	30
20	40
25	50
30	60
35	70

[Model NSR-TBC]

Unit: µm

Model No.	Clearance C1	Normal clearance
20	40	50
25	50	70
30	60	80
40	70	90
50	80	110
70	90	130

[Flatness of the Mounting Surface]

The following tables show errors in flatness of the mounting surface with models SRS, RSR, RSR-W and RSH that will not affect their service lives in normal operation. Note that if the flatness of the mounting surface is poorly established for models other than those above, it may affect the service life.

[Model SRS]

Unit: mm

Model No.	Flatness error
7 M	0.025/200
7 WM	0.025/200
9 M	0.035/200
9 WM	0.035/200
12 M	0.050/200
12 WM	0.050/200
15 M	0.060/200
15 WM	0.060/200
20 M	0.070/200
25 M	0.070/200

[Models RSR, RSR-W, RSR-Z, RSH and RSH-Z]

Unit: mm

Model No.	Flatness error
3	0.012/200
5	0.015/200
7	0.025/200
9	0.035/200
12	0.050/200
14	0.060/200
15	0.060/200
20	0.110/200
7 A	0.100/200
9 A	0.160/200
12 A	0.200/200
15 A	0.250/200
20 A	0.300/200

Note1) With the mounting surface, multiple accuracies are combined in many cases. Therefore, we recommend using 70% or less of the values above. Note2) The above figures apply to normal clearances. When

using two or more rails with clearance C1, we recommend using 50% or less of the values above.

[Error Allowance in Vertical Level between Two Rails]

The values in the tables on A1-318 and A1-319 represent error allowances in vertical level between two rails per axis-to-axis distance of 500 mm and are proportionate to axis-to-axis distances (200 mm for model RSR).

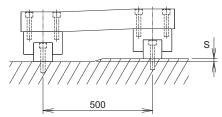


Fig.19 Error Allowance in Vertical Level (S) between Two Rails

Unit: µm

[Models SHS, HSR, CSR, HSR-M1, and HSR-M2]

[Models SNR, SNR-H and NR]

Model

Unit: µm

Normal

Model No.	Clearance C0	Clearance C1	Normal clearance
8	_	11	40
10	_	16	50
12	_	20	65
15	_	85	130
20	50	85	130
25	70	85	130
30	90	110	170
35	120	150	210
45	140	170	250
55	170	210	300
65	200	250	350
85	240	290	400
100	280	330	450
120	320	370	500
150	360	410	550

No.	C0	C1	clearance
25	35	43	65
30	45	55	85
35	60	75	105
45	70	85	125
55	85	105	150
65	100	125	175
75	110	135	188
85	120	145	200
100	140	165	225

Clearance

Clearance

[Model JR]

Unit: µm

Model No.	_
25	400
35	500
45	800
55	1000

[Model SSR, SR, SR-M1]

Unit: µm

			•
Model No.	Clearance C0	Clearance C1	Normal clearance
15	_	100	180
20	80	100	180
25	100	120	200
30	120	150	240
35	170	210	300
45	200	240	360
55	250	300	420
70	300	350	480
85	350	420	540
100	400	480	600
120	450	540	720
150	500	600	780

[Models SNS, SNS-H and NRS]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
25	49	60	91
30	63	77	119
35	84	105	147
45	98	119	175
55	119	147	210
65	140	175	245
75	154	189	263
85	168	203	280
100	196	231	315

[Models SRS, RSR, RSR-W, RSR-Z, RSH, RSH-Z and RSR-M1]

Unit: u.m

			Oπ. μπ
Model	Gothic-arch groove		Circular-arc groove
No.	Clearance C1	Normal clearance	Normal clearance
3	_	15	_
5	_	20	_
7	_	25	_
9	6	35	160
12	12	50	200
14	20	60	_
15	20	60	250
20	30	70	300
25	40	80	350

[Models SHW and HRW]

Unit: µm

Model No.	Clearance C0	Clearance C1	Normal clearance
12	_	11	40
14	_	16	50
17	1	20	65
21	1	85	130
27	_	85	130
35	70	85	130
50	90	110	170
60	120	150	210

[Model HR]

Unit: μ m

Model No.	Clearance C0	Clearance C1	Normal clearance
918	_	15	45
1123	_	20	50
1530	_	60	90
2042	50	60	90
2555	85	100	150
3065	95	110	165
3575	100	120	175
4085	120	150	210
50105	140	175	245
60125	170	200	280

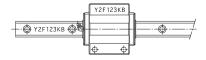
[Models GSR and GSR-R]

Unit: µm

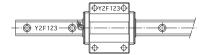
Model No.	_
15	240
20	300
25	360
30	420
35	480

[Model NSR-TBC]

Unit: µm


Model No.	Clearance C1	Normal clearance
20	210	300
25	240	360
30	270	420
40	360	540
50	420	600
70	480	660

Marking on the Master LM Guide and Combined Use


[Marking on the Master LM Guide]

All LM rails mounted on the same plane are marked with the same serial number. Of those LM rails, the one marked with "KB" after the serial number is the master LM rail. The LM block on the master LM rail has its reference surface finished to a designated accuracy, allowing it to serve as the positioning reference for the table. (See Fig.20.)

LM Guides of normal grade are not marked with "KB." Therefore, any one of the LM rails having the same serial number can be used as the master I M rail

Master LM Guide

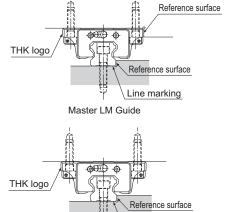

Subsidiary LM Guide

Fig.20 Master LM Guide and Subsidiary LM Guide

[Markings on the Reference Surface]

In the LM Guide, the reference surface of the LM block is opposite the surface marked with the THK logo, and that of the LM rail is on the surface marked with a line (see Fig.21). If it is necessary to reverse the reference surface of the LM rail and block, or if the grease nipple must be oriented in the opposite direction, specify it.

Subsidiary LM Guide

Line marking

Fig.21 Markings on the Reference Surface

[Serial Number Marking and Combined Use of an LM Rail and LM Blocks]

An LM rail and LM block(s) used in combination must have the same serial number. When removing an LM block from the LM rail and reinstalling the LM block, make sure that they have the same serial number and the numbers are oriented in the same direction. (Fig.22)

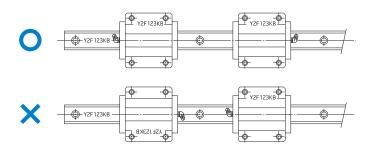


Fig.22 Serial Number Marking and Combined Use of an LM Rail and LM Blocks

[Use of Jointed Rails]

When a long LM rail is ordered, two or more rails will be jointed together to the desired length. When jointing rails, make sure that the joint match marks shown in Fig.23 are correctly positioned. When two LM Guides with connected rails are to be arranged in parallel to each other, the two LM Guides will be manufactured so that the two LM Guides are axisymmetrically aligned.

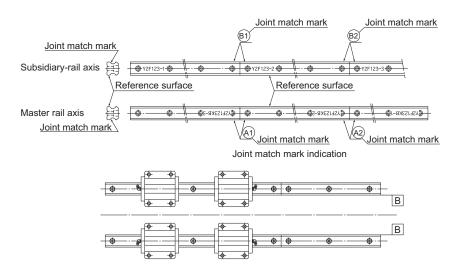


Fig.23 Use of Jointed Rails

Mounting the LM Guide

Mounting Procedure

[Example of Mounting the LM Guide When an Impact Load is Applied to the Machine and therefore Rigidity and High Accuracy are Required]

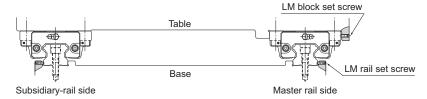


Fig.1 When an Impact Load is Applied to the Machine

Mounting the LM Rail(s)

(1) Be sure to remove burr, dent and dust from the mounting surface of the machine to which the LM Guide is to be mounted before installing the LM Guide. (Fig.2)

> Note) Since the LM Guide is coated with anti-rust oil, remove it from the reference surface by wiping the surface with washing oil before using the guide. Once the anti-rust oil has been removed, the reference surface is prone to getting rusted. We recommend applying low-viscosity spindle

(2) Gently place the LM rail onto the base, and temporarily secure the bolts to the extent that the LM rail lightly contacts the mounting surface (align the line-marked side of the LM rail with the side reference-surface of the base). (Fig.3)

> Note) The bolts for securing the LM Guide must be clean. When placing the bolts into the mounting holes of the LM rail, check if the bolt holes are displaced.(Fig.4) Forcibly tightening the bolt into a displaced hole may deteriorate the accuracy.



Fig.2 Checking the Mounting Surface

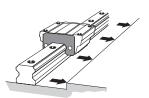


Fig.3 Aligning the LM Rail with the Reference-Surface

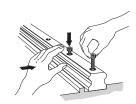


Fig.4 Checking with the Bolt for an Allowance

Mounting Procedure and Maintenance

Mounting the LM Guide

- (3) Secure the set screws for the LM rail in order with a tightening force just enough to have the rail closely contact the side mounting surface. (Fig.5)
- (4) Tighten the mounting bolts at the designated torque using a torque wrench. (See Fig.6, and Table1 and Table2 on ▲1-332.)
 - Note) To achieve stable accuracy when tightening the LM rail mounting bolts, tighten them in order from the center to the rail ends.
- (5) Mount the other rail in the same manner to complete the installation of the LM rails.
- (6) Hammer in caps into the bolt holes on the top face of each LM rail until the top of the cap is on the same level as the top face of the rail.

Mounting the LM Blocks

- Gently place the table on the LM blocks and temporarily fasten the mounting bolts.
- (2) Press the master side LM blocks to the side reference surface of the table using set screws and position the table. (See Fig.1 on A1-322.)
- (3) Fully fasten the mounting bolts on the master side and the subsidiary side to complete the installation.

Note) To evenly secure the table, tighten the mounting bolts in diagonal order as shown in Fig.7.

This method saves time in establishing straightness of the LM rail and eliminates the need to machine securing dowel pins, thus to drastically shorten the installation man-hours.

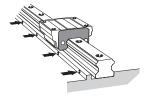


Fig.5 Tightening the Set screws

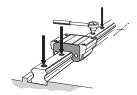


Fig.6 Fully Fastening the Mounting Bolts

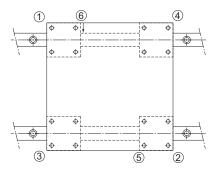


Fig.7 Sequence of Tightening the LM Blocks

[Example of Mounting the LM Guide When the Master LM Rail is not Provided with Set screws]

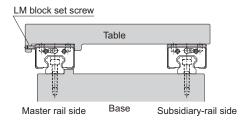
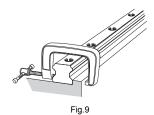



Fig.8 When the Master LM Rail is not Provided with Set screws

Mounting the Master LM Rail

After temporarily fastening the mounting bolts, firmly press the LM rail to the side reference surface at the position of each mounting bolt using a small vice and fully fasten the bolt. Perform this in order from either rail end to the other. (Fig.9)

Mounting the Subsidiary LM Rail

To mount the subsidiary LM rail in parallel with the master LM rail, which has been correctly installed, we recommend adopting the methods below.

■Using a Straight-edge

Place straight-edges between the two rails, and arrange the straight-edges in parallel with the side reference surface of the master LM rail using a dial gauge. Then, secure the mounting bolts in order while achieving straightness of the subsidiary rail with the straight edge as the reference by using the dial gauge. (Fig.10)

Fig.10

■Using Parallelism of the Table

Secure the two LM blocks on the master LM rail with the table (or a temporary table for measurement), and temporarily fasten the LM rail and the LM block on the subsidiary LM rail with the table. Place a dial gauge to the side face of the LM block on the subsidiary rail from the dial stand fixed on the table top, then fasten the bolts in order while achieving parallelism of the subsidiary LM rail by moving the table from the rail end. (Fig.11)

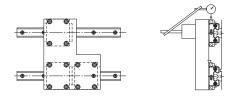


Fig.11

■Having the Subsidiary LM Rail Follow the Master LM Rail

Place the table on the blocks of the correctly mounted master LM rail and the temporarily fastened subsidiary LM rail, and fully fasten the two LM blocks on the master rail and one of the two LM blocks on the subsidiary rail with bolts. Fully tighten the mounting bolts on the subsidiary LM rail in order while temporarily fastening the remaining LM block on the subsidiary LM rail. (Fig.12)

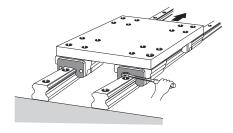


Fig.12

■Using a Jig

Use a jig like the one shown in Fig.13 to achieve parallelism of the reference surface on the subsidiary side against the side reference surface of the master side from one end of the rail by the mounting pitch, and at the same time, fully fasten the mounting bolts in order. (Fig.13)

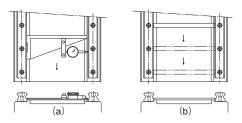


Fig.13

[Example of Mounting the LM Guide When the Master LM Rail Does not Have a Reference Surface]

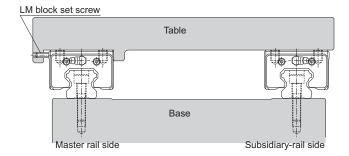


Fig.14

Mounting the Master LM Rail

■Using a Temporary Reference Surface

You can temporarily set a reference surface near the LM rail mounting position on the base to achieve straightness of the LM rail from the rail end. In this method, two LM blocks must be joined together and attached to a measurement plate, as shown in Fig.15.

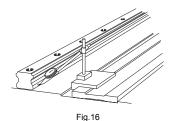
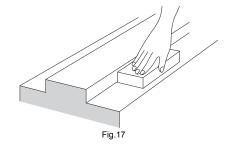


Fig.15

■Using a Straight-edge

After temporarily fastening the mounting bolts, use a dial gauge to check the straightness of the side reference surface of the LM rail from the rail end, and at the same time, fully fasten the mounting bolts.(Fig.16)


To mount the subsidiary LM rail, follow the procedure described on A1-324.

[Procedure for Assembling Model HR]

The following procedure is recommended for assembling model HR.

- Remove burr or knots from the LM rail mounting surface of the base using an oilstone. (Fig.17)
- (2) Use a small vice to press the two LM rails to the base so that they closely contact the reference surface, then tighten the mounting bolts to the recommended torque (see A1-332). (Fig.18)
 - a. Check if any of the bolts has a sinking.
 - b. Use a torque wrench to tighten the bolts in order from the center to both ends.
- (3) Mount the LM blocks on the table, then install them onto the LM rails. Be sure the mounting bolts for the LM blocks are temporarily fastened.
- (4) Tighten the clearance adjustment bolt alternately to adjust the clearance.
 - If a relatively large preload is applied in order to achieve high rigidity, control the tightening torque or the rolling resistance.
 - a. It is preferable to use three clearance adjustment bolts for each LM block as shown in Fig.19.
 - b. To obtain a favorable result of the clearance adjustment, set the tightening torque of the two outside screws at approx. 90% of that of the enter screw.
- (5) Secure each LM block by gradually tightening the two LM block mounting bolts, which have temporarily been fastened, while sliding the table. (Fig.20)

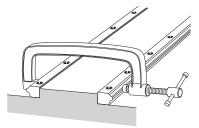


Fig.18

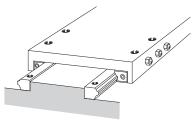
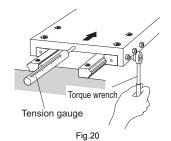
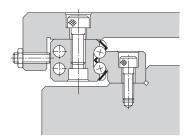
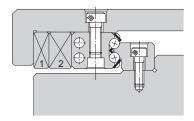



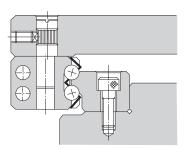
Fig.19



• Example of Clearance Adjustment


Design the clearance adjustment bolt so that it presses the center of the side face of the LM block.

a. Using an adjustment screw


Normally, an adjustment screw is used to press the LM block.

b. Using tapered gibs
When high accuracy and high rigidity are required, use tapered gibs 1) and 2).

Using an eccentric pin
 A type using an eccentric pin to adjust the clearance is also available.

[Procedure for Assembling Model GSR]

surface. (Fig.21)

The procedure for assembling model GSR is as follows:

- Align the table with the reference-surface of each LM block and fully fasten the mounting bolts to secure the blocks.
 Both ends of the table must have a datum
- (2) Place LM rail A onto the base and align the rail with a straight-edge. Fully fasten the mounting bolts using a torque wrench. (Fig.22)
- (3) Temporarily secure LM rail B onto the base, then mount the blocks on the rail by sliding the blocks.
 - Temporarily fasten LM rail B while pressing it toward the LM blocks. (Fig.23)
- (4) Slide the table a few strokes to fit the LM blocks to LM rail B, then fully fasten LM rail B using a torque wrench. (Fig.24)

If there are more GSR units to be assembled, we recommend producing a jig like the one shown in Fig.25 first. You can easily mount LM rails while achieving parallelism of the LM rails using the jig.

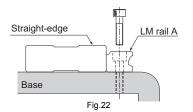



Fig.21

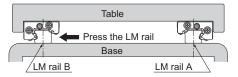
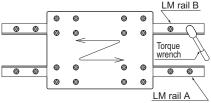
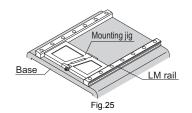
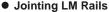


Fig.23


Fig.24

[Procedure for Assembling Model JR]

Mounting the LM Rails

When two LM rails are to be used in parallel as shown in Fig.26, first secure one LM rail on the base, and place a dial gauge on the LM block. Then, place the pointer of the dial gauge on the side face and top face of the other LM rail to simultaneously adjust the parallelism and the level, thus to complete mounting the LM rails.

When two or more LM rails are to be jointed, a special metal fitting as shown in Fig.27 is available. For such applications, specify this fitting when ordering the LM Guide.

● Welding the LM Rail
When welding the LM rail, it is best to weld the
LM rail while clamping it at the welding point
with a small vice or the like as shown in Fig.28.
For effective welding, we recommend the following welding conditions. (During welding the LM
rail, take care to prevent spatter from contacting
the LM rail raceway.)

[Welding conditions] Preheating temperature:200°C Postheating temperature:350°C

Note) If the temperature exceeds 750°C, the LM rail may be hardened again.

[For shielded metal arc welding] Welding rod: LB-52 (Kobelco)

[For carbon dioxide arc welding]

Wire: YGW12 Electric current: 200A

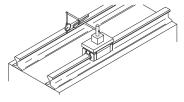


Fig.26

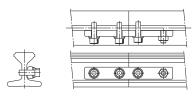


Fig.27

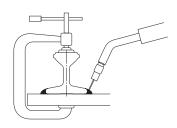


Fig.28

[Procedure for Assembling Model HCR]

To install the LM rails of R Guide model HCR, we recommend having any form of datum point (such as a pin) on the reference side (inside) of the LM rail, and pressing the LM rail to the datum point then stopping the LM rail with a presser plate from the counter-reference surface.

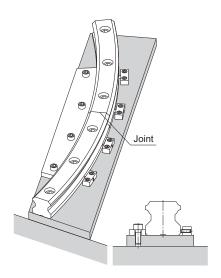
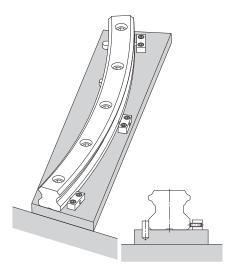
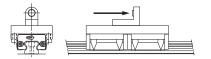
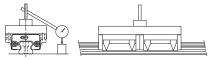


Fig.29 Method for Securing the LM Rails at the Joint


Fig.30 Method for Securing the LM Rail Using a Pin as a Datum Point

Methods for Measuring Accuracy after Installation

[When Measuring Running Accuracy for Single Rail Application]

When measuring running accuracy of the LM block, stable accuracy can be obtained by securing two LM blocks on an inspection plate, as shown in Fig.31. When using a dial gauge, we recommend placing the straight-edge as close as possible to the LM block in order to perform accurate measurement.

- 1) Measurement method using an auto-collimator
- 2) Measurement method using a dial gauge

Fig.31 Methods for Measuring Accuracy after Installation

Recommended Tightening Torque for LM Rails

With high-precision LM rails for the LM Guide, their raceways are ground and accuracy is inspected with the rails tightened with bolts. When mounting a high-precision LM rail on a machine, we recommend using the corresponding tightening torque indicated in Table1 or Table2

Table1 Tightening Torques when Pan Head Screws are Used
Unit: N-cm

	Screw	Tightening torque							
	model No.	Not hardened	Hardened						
M 2		17.6	21.6						
	M 2.3	29.4	35.3						
	M 2.6	44.1	52.9						

Table2 Tightening Torques when Hexagonal-Socket-Head Type Bolts are Used

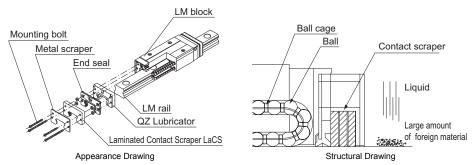
Unit: N-cm

Screw	Ti	ghtening torqu	ıe				
model No.	Iron	Casting	Aluminum				
M 2	58.8	39.2	29.4				
M 2.3	78.4	53.9	39.2				
M 2.6	118	78.4	58.8				
M 3	196	127	98				
M 4	412	274	206				
M 5	882	588	441 686 1470				
M 6	1370	921					
M 8	3040	2010					
M 10	6760	4510	3330				
M 12	11800	7840	5880				
M 14	15700	10500	7840				
M 16	19600	13100	9800				
M 20	38200	25500	19100 26000				
M 22	51900	34800					
M 24	65700	44100	32800				
M 30	130000	87200	65200				

LM Guide
Options

Seal and Metal Scraper

- For the supported models, see the table of options by model number on 🔼 1-354 .
- For the LM block dimension (dimension L) with seal attached, see ■1-236 to ■1-242.
- ●For the maximum seal resistance, see ▲1-356 to ▲1-358.


Item name	Schematic diagram / mounting location	Purpose/location of use
End Seal	End seal End seal	Used in locations exposed to dust
Side Seal	Side seal Side seal	Used in locations where dust may enter the LM block from the side or bottom surface, such as vertical, horizontal and inverted mounts
Inner Seal	Inner seal Inner seal	Used in locations severely exposed to dust or cutting chips
Double Seals	End seal Spacer End seal Hexagon socket button bolt	Used in locations exposed to much dust or many cutting chips
Metal Scraper (Non-contact)	End seal Metal scraper Hexagon socket button bolt	Used in locations where welding spatter may adhere to the LM rail

Symbol	Contamination Protection Accessories
UU	End seal
SS	With end seal + side seal + inner seal
DD	With double seals + side seal + inner seal
ZZ	With end seal + side seal + inner seal + metal scraper
KK	With double seals + side seal + inner seal + metal scraper

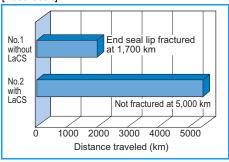
Laminated Contact Scraper LaCS

- For the supported models, see the table of options by model number on 🔼 1-354 .
- ●For the LM block dimension (dimension L) with LaCS attached, see 🗟1-236 to 🗟1-242.
- ●For the resistance of LaCS, see ▲1-359 .

For locations with adverse environment, Laminated Contact Scraper LaCS is available. LaCS removes minute foreign material adhering to the LM rail in multiple stages and prevents it from entering the LM block with laminated contact structure (3-layer scraper).

[Features]

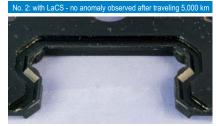
- Since the 3 layers of scrapers fully contact the LM rail, LaCS is highly capable of removing minute foreign material.
- Since it uses oil-impregnated, foam synthetic rubber with a self-lubricating function, low friction resistance is achieved.


Symbol	Contamination Protection Accessories
SSHH	With end seal + side seal + inner seal + LaCS
DDHH	With double seals + side seal + inner seal + LaCS
ZZHH	With end seal + side seal + inner seal + metal scraper + LaCS
KKHH	With double seals + side seal + inner seal + metal scraper + LaCS

Test under an Environment with a Water-soluble Coolant


[Test conditions] Test environment: water-soluble coolant

[Test conditions] Test environment, water-soluble coola							
Ite	m	Description					
Tested	No.1	SHS45R1SS+3000L (end seal only)					
model	No.2	SHS45R1SSHH+3000L (end seal and LaC					
Maximum speed Environmental conditions		200m/min					
		Coolant sprayed: 5 time per day					


[Test result]

Magnified view of the end seal lip

Areas marked with arrow are fractured

Lip has not been fractured

Test under an Environment with Minute Foreign Matter

[Test conditions] Test environment: minute foreign material

Ite	m	Description					
Tested	No.1	SNR45R1DD+600L (double seals only)					
model	No.2	SNR45R1HH+600L (LaCS only)					
Max speed/ acceleration		60m/min, 1G					
Extern load	al	9.6kN					
Foreig		Type: FCD450#115 (particle diameter: 125 µm or less)					
conditi		Sprayed amount: 1g/1hour (total sprayed amount: 120 g)					

[Test result] Amount of foreign material entering the raceway

	-	
Seal configuration		Amount of foreign material entering the raceway g
Double-seal	Tested model 1	0.3
configuration (2 end seals superposed	Tested model 2	0.3
with each other)	Tested model 3	0.3
	Tested model 1	0
LaCS	Tested model 2	0
	Tested model 3	0

No. 1 Traveled 100 km (double-seal configuration)

Large amount of foreign matter has entered the raceway

No. 2 Traveled 100 km (LaCS only)

No foreign matter entering the raceway observed

Light-Resistance Contact Seal LiCS

- ●For the supported models, see the table of options by model number on ▲1-354.
- For the LM block dimension (dimension L) with LiCS attached, see 图1-245.
- ●For the resistance of LiCS, see ▲1-360.

LiCS is a light sliding resistance contact seal. It is effective in removing dust on the raceway and retaining a lubricant such as grease. It achieves extremely low drag and smooth, stable motion.

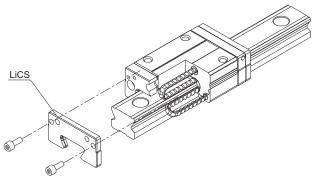


Fig.1 Structural Drawing of SSR + LiCS

[Features]

Light-Resistance Contact Seal LiCS is a seal that uses a light-resistance material in its sealing element and contacts the LM rail raceway to achieve low drag resistance. It is optimal for applications where low drag resistance is required, such as semiconductor-related devices, inspection devices and OA equipment all of which are used in favorable environments.

- Since the sealing element contacts the LM rail raceway, it is effective in removing dust on the raceway.
- Use of oil-impregnated, expanded synthetic rubber, which has excellent self-lubricating property, achieves low drag resistance.

Model number coding SSR₂₀ XW GG C1 +600L LM Guide With LiCS seal Type of LM rail length Symbol for model LM block on both ends (in mm) number of axes number Accuracy symbol Radial clearance symbol No. of LM blocks Normal grade (No Symbol) / High accuracy grade (H) Precision grade (P) / Super precision grade (SP) Normal (No symbol) used on the same rail Light preload (C1) Ultra precision grade (UP) Medium preload (C0)

Symbol	Contamination Protection Accessories
GG	LiCS
PP	With LiCS + side seal + inner seal

Dedicated Bellows

- ullet For the supported models, see the table of options by model number on lacktriangle 1-354 .
- ●For the dedicated bellows dimensions, see 🖽1-247 to 🖼1-259 .

Item name	Schematic diagram / mounting location	Purpose/location of use
Dedicated Bellows	Bellows	Used in locations exposed to dust or cutting chips

Dedicated LM Cover

- \bullet For the supported models, see the table of options by model number on $\blacksquare 1\text{-}354$.
- ●For the dimensions of the dedicated LM cover, see 🖪1-260 to 🖺1-261 .

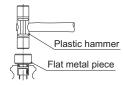
Item name	Schematic diagram / mounting location	Purpose/location of use
Dedicated LM Cover	LM cover	Used in locations exposed to dust or cutting chips Used in locations where high temperature foreign material such as flying spatter

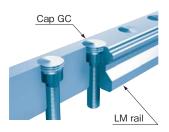
Cap C

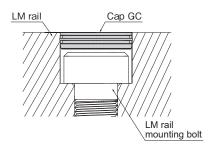
If any of the LM rail mounting holes of an LM Guide is filled with cutting chips or foreign material, they may enter the LM block structure. Entrance of such foreign material can be prevented by covering each LM rail mounting hole with the dedicated cap.

Since the dedicated cap C for LM rail mounting holes uses a special synthetic resin with high oil resistance and high wear resistance, it is highly durable. Different sizes of the dedicated cap C are in stock as standard for hexagonal-socket-head type bolts of M3 to M22.

To attach the dedicated cap to the mounting hole, place a flat metal piece like one shown in Fig.1 on the cap and gradually hammer in the cap until it is on the same level as the top face of the LM rail. When attaching the dedicated cap C for LM rail mounting holes, do not remove any of the LM blocks from the LM rail.




Fig.1 Cap C

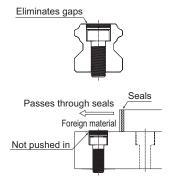

Table1 List of Model Numbers Supported for the Dedicated Cap C for LM Rail Mounting Holes

Mod	Bolt	Main o								uppor	ted m	odel ı	numbe	er					
el No.	used	D	Η	SSR	SCR	SR	SNR SNS	NR NRS		HMG	SHW	HRW	SRG SRN	GSR			SRS-W RSR-W RSH-W	NSR- TBC	SRW
C3	М3	6.3	1.2	_	1	15	-	ı	12	ı	ı	ı	_	ı	1123 1530	12 15	9	ı	-
C4	M4	7.8	1.0	15Y	1	1	_	-	15	15	12,14, 17,21, 27	14, 17, 21, 27	15	15	-	1	14	-	_
C5	M5	9.8	2.4	20	_	20	25	25X	20	_	_	_	20	20	2042	20	_	20	_
C6	M6	11.4	2.7	25Y 30	25	25Y 30	30	30	25	25	35	35	25	25	_	25	_	25 30	_
C8	M8	14.4	3.7	35	30 35	35	35	35	30 35	35	50	50	30 35	30	2555 3065	_	_	40	_
C10	M10	18.0	3.7	-	_	45	-	ı	ı	ı	60	60	-	35	3575		-	50	70
C12	M12	20.5	4.7	_	45	55	45	45	45	45	ı	ı	45	I	4085	-	_	70	85
C14	M14	23.5	5.7	-	-	1	55	55	55	I	l	I	55	I	l	1	-	l	100
C16	M16	26.5	5.7	_	65	70 85	65	65	65	65	_	_	65	_	50105	_	_	_	130
C22	M22	35.5	5.7	_	_	_	85	85	85	_	_	_	85	_	_	_	_	_	150
C24	M24	39.5	7.7	_	_	_	_	_	_	_	_	_	100	_	_	_	_	_	_

Note) The dedicated cap for the LM rail mounting hole can be made of other materials (e.g., metal). Contact THK for details.

Cap GC

GC caps are metal caps designed to cover the mounting holes in LM rails (in compliance with RoHS directives). In harsh environments, preventing any influx of coolant or foreign material from the top face of the LM rail, coupled with the use of seals, will dramatically improve the contamination protection performance for the LM guide.


[Features]

Eliminating gaps around the mounting holes (countersunk holes)

The GC caps press into the mounting holes (countersunk holes) so that there are no gaps.

Provides long-term sealing due to its excellent abrasion resistance

If a countermeasure such as a seal passes along the rail when there is foreign matter on the upper surface of the LM rail, it generates force pushing the GC cap in from above. In this situation, the cap does not get pushed inwards as it is easily strong enough to stay in place.

GC caps are highly effective in a range of different environments.

			LM G	Suide	Example of Using
	Service e	nvironment	Standard C cap fitted	GC cap fitted	the Spring Pad
		Metal powder, sputtering	0	0	Welding machines, robots
	Foreign matter concentration: Low	Wood shavings, coolant (Environments that strip away oils)	0	0	Woodworking machinery, washers
Poor environ-		Metal powder + coolant	0	0	Lathes, machining centers
ment		Metal powder, sputtering	Δ	0	Welding machines, robots
	Foreign matter concentration: High	Wood shavings, coolant (Environments that strip away oils)	Δ	0	Woodworking machinery, washers
		Metal powder + coolant	Δ	0	Lathes, machining centers

◎Particularly effective O: Effective △:Not particularly effective

[Dimensions, applicable model number]

Specification Table

Unit: mm

	øl	D
Н		

ſ	Model No.	Outer diameter D	
	GC5	9.86	2.5
	GC6	11.36	2.5
	GC8	14.36	3.5
	GC10	17.86	3.5
	GC12	20.36	4.6
	GC14	23.36	5.0
I	GC16	26.36	5.0
[GC22	35.36	5.0
	GC24	39.36	5.0

Supported model numbers

GC caps are suitable for various different model numbers.

	LM rail						Guide m	odel nur	nber				
Model No.	mount- ing bolt	SSR	SR	SNR SNS	NR NRS	SHS HSR HCR	SCR CSR	SHW HRW	SRG SRN	SRW	GSR	HR	NSR- TBC
GC5	M5	20	20	25	25X	20	20	_	20	_	20	2042	20
GC6	M6	25Y 30	25Y 30	30	30	25	25	35	25	_	25	_	25 30
GC8	M8	35	35	35	35	30 35	30 35	50	30 35	_	30	2555 3065	40
GC10	M10	_	45	_	_	_	_	60	_	70	35	3575	50
GC12	M12	_	55	45	45	45	45	_	45	85	_	4085	70
GC14	M14	-	-	55	55	55	-	_	55	100	-	_	_
GC16	M16	-	70 85	65	65	65	65	_	65	130	_	50105	_
GC22	M22	_	_	85	85	85	_	_	85	150	_	_	_
GC24	M24	_	120	-	_	100	_	_	100	_	_	_	_

Model number coding

QZ KKHH C0 +1200L GC

Model No. Type of LM block

With QZ Lubricator

Contamination used on the same rail protection accessory symbol

LM rail length (in mm) Radial clearance symbol Normal (No symbol) Light preload (C1) Medium preload (C0)

With GC cap (Note5) Symbol for No. of rails used on the same plane (Note5)

Accuracy symbol Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

Note1) LM guides with GC caps are special rails.

No. of LM blocks

Note2) They cannot be mounted on stainless steel LM rails or LM rails that have undergone surface treatment.

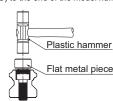
Note3) If this product will be used in special environments, such as in a vacuum or at very low or high temperatures, contact THK.

Note4) GC caps are not sold individually. They are sold as a set with LM guides.

Note5) The openings of LM rail mounting holes are not chamfered. Take care not to injure your hands while working.

Note6) After fitting GC caps, the upper surface of the LM rail must be flattened and cleaned (wiped).

Note7) If you wish to fit GC caps for a single rail, use the sample model number configuration shown below.


(Example) SNR45LR2QZKKHHC0+1200LPGC

With GC cap

* Add the symbol (GC) to the end of the model number.

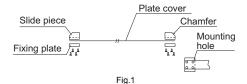
Mounting method

The procedure for inserting a GC cap into a mounting hole consists of using a flat aligning fitting to gradually punch the cap into the hole until it is level with the upper surface of the LM rail, as shown in the figure. Fit GC caps without removing the LM rail from the LM block.

Plate Cover SV Steel Tape SP

●For the supported models, see the table of options by model number on 🔼 1-354 .

Item name	Schematic diagram / mounting location	Purpose/location of use
Plate Cover SV	Plate cover: SV Fixing-jig: NT Slide piece Case fixing bolt Tension screw	For the LM Guide, steel tapes are available as a means of contamination protection for machine tools. By covering the LM rail mounting holes with an ultra-thin stainless steel (SUS304) plate, the plate cover SV drastically increases sealability, thus to prevent the penetration of a coolant or cutting chips from the top face of the LM rail. For the mounting method, see 1-343. Note) When mounting the plate cover, the LM rail needs to be machined. Indicate that the plate cover is required when ordering the LM Guide.
Steel Tape SP	Setscrew End piece: EP Tap for attaching bellows LM block mounting/removing jig	For the LM Guide, steel tapes are available as a means of contamination protection for machine tools. By covering the LM rail mounting holes with an ultra-thin stainless steel (SUS304) plate, the steel tape SP drastically increases sealability, thus to prevent the penetration of a coolant or cutting chips from the top face of the LM rail. (When mounting the steel tape, end piece EP can be used as a means to secure the cover.) For the mounting method, see 1-344. Note) When mounting the steel tape, the LM rail needs to be machined. Indicate that the steel tape is required when ordering the LM Guide.


[Mounting Procedure for Plate Cover SV]

- (1) Attach slide pieces to the plate cover. Place the slide pieces on the plate cover with their chamfered sides facing outward, hold the plate cover with the slide pieces and the securing plates, and then secure them with countersunk screws.
- (2) Use an LM block mounting/removing jig to remove the LM block from the LM rail, and then mount the fixing-jigs onto the LM rail. Identify the positions of the mounting holes on the fixing jigs, then secure the jigs with hexagonal-socket-head type bolts.
- (3) Temporarily secure either slide piece. Insert either slide piece into one of the fixing-jigs, then attach the slide piece to the LM rail's end face using the tension adjustment bolt and gently secure the bolt until the bolt head is inside the fixing-jig.
- (4) Temporarily secure the other slide piece. Temporarily secure the other slide piece in the same manner as above.
- (5) Apply tension to the plate cover. Apply tension to the plate cover by evenly securing the tension adjustment bolts on both ends of the LM rail. Make sure there is only a small difference between the H and H' dimensions in Fig.5. If the difference is too large, there may be no interference left on either end.
- (6) Mount the LM block on the LM rail. Identity the reference surface of the LM rail and the LM block, then insert the LM rail into the LM block using the LM block mounting /removing jig.

Note1) When removing or the mounting the LM block, use much care not to let the balls fall off.

Note2) The plate cover is an ultra-thin stainless steel (SUS304) plate. When handing it, use much care not to bend it.

Note3) The plate cover is available for models SNR/SNS35 to 65 and models NR/NRS35 to 100.

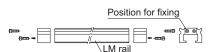


Fig.2

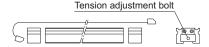
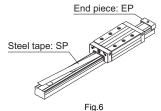


Fig.3

Fig.4

Fig.5


[Mounting Procedure for Steel Tape SP]

- Use an LM block mounting/removing jig to remove the LM block from the LM rail.
- (2) Thoroughly degrease and clean the top face of the LM rail, to which the steel tape is to be adhered. For degreasing, use an adequately volatile detergent (e.g., industrial alcohol).
- (3) Carefully adhere the steel tape from the end with care not to let it bend or sag, while gradually peeling the release paper from the steel tape.
- (4) Have the steel tape settle on the rail by rubbing the tape. The adhesive strength increases with time. The adhering tape can be peeled off by pulling its end upward.
- (5) Mount the LM block onto the LM rail using the LM block mounting/removing jig.
- (6) Attach the end pieces on both ends of the LM rail and further secure the steel tape. When securing the end pieces, fasten only the setscrew on the top face of each end piece.

(The tap on the end face of the end piece is used for mounting bellows.)

Note1) The setscrew on the side face is used to lightly secure the bent steel tape. Be sure to stop fastening the screw as soon as it hits the end face, and do not force the screw further.

Note2) Since the steel tape is a thin steel plate, mishandling it may cause an accident such as cutting your finger. When handling it, take an effective safety measure such as wearing rubber gloves.

1 ig.0

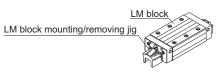


Fig.7

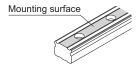


Fig.8

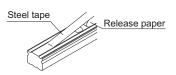
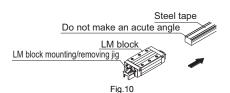
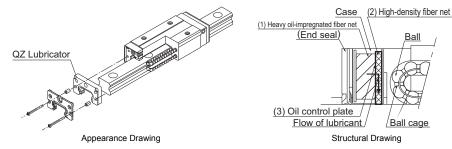



Fig.9

Steel tape: SP

Setscrew
End piece: EP

Tap for attaching a bellows

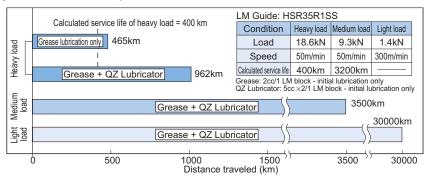

Fig.11

QZ Lubricator

- ●For the supported models, see the table of options by model number on ▲1-354.
- ●For the LM block dimension with QZ attached, see ■1-264 to ■1-266.

QZ Lubricator feeds the right amount of lubricant to the raceway on the LM rail. This allows an oil film to continuously be formed between the rolling element and the raceway, and drastically extends the lubrication and maintenance intervals.

The structure of QZ Lubricator consists of three major components: (1) a heavy oil-impregnated fiber net (function to store lubricant), (2) a high-density fiber net (function to apply lubricant to the raceway) and (3) an oil-control plate (function to adjust oil flow). The lubricant contained in QZ Lubricator is fed by the capillary phenomenon, which is used also in felt pens and many other products, as the fundamental principle.

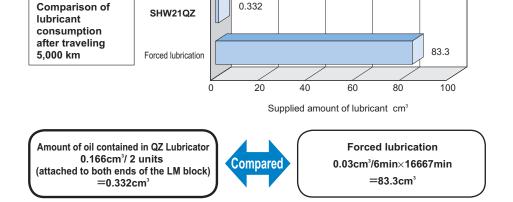

[Features]

- Since it supplements an oil loss, the lubrication maintenance interval can be significantly extended.
- Eco-friendly lubrication system that does not contaminate the surrounding area since it feeds the right amount of lubricant to the ball raceway.

Symbol	Contamination Protection Accessories
QZUU	With end seal + QZ
QZSS	With end seal + side seal + inner seal + QZ
QZDD	With double seals + side seal + inner seal + QZ
QZZZ	With end seal + side seal + inner seal + metal scraper + QZ
QZKK	With double seals + side seal + inner seal + metal scraper + QZ
QZGG	With LiCS + QZ
QZPP	With LiCS + side seal + inner seal + QZ
QZSSHH	With end seal + side seal + inner seal + LaCS + QZ
QZDDHH	With double seals + side seal + inner seal + LaCS + QZ
QZZZHH	With end seal + side seal + inner seal + metal scraper + LaCS + QZ
QZKKHH	With double seals + side seal + inner seal + metal scraper + LaCS + QZ

Significantly Extended Maintenance Interval

Attaching QZ Lubricator helps extend the maintenance interval throughout the whole load range from the light load area to the heavy load area.



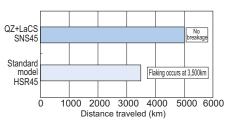
LM Guide Running Test without Replenishment of Lubricant

Effective Use of Lubricant

Since the lubricator feeds the right amount of lubricant to the ball raceway, lubricant can be used efficiently.

[Test conditions] speed: 300 m/min

Lubricant consumption is 1/250 less than forced lubrication.


• Effective in Helping Lubrication under Severe Environments

A 5,000 km durability test was conducted under severe environments (containing coolant and contaminated environment).

[Test conditions]

Model No.	SNS45	HSR45					
Load	8kN	6kN					
Speed	60m/min						
Coolant	Immersed 48 hrs, dried 96 hrs						
Foreign material	Foundry dust (125 µm or less)					
Lubrication	AFA Grease + QZ	Super Multi 68 Oiling cycle: 0.1cc/shot Periodically lubricated every 16 min					

[Test result]

^{*} When using the LM system under severe environment, use QZ Lubricator and Laminated Contact Scraper LaCS (see "Laminated Contact Scraper LaCS" on

■1-335) in combination.

Lubrication Adapter

An oil lubricant-only lubrication adapter is available for models NR/NRS.

Even if the LM Guide is installed in an orientation where oil lubrication is difficult, such as wall mount and inversed mount, the adapter is capable of feeding a constant quantity of lubricant to the four raceways.

[Features]

The dedicated lubrication adapter for models NR-NRS is built in with a constant quantity distributor. Therefore, the adapter can accurately feed a constant quantity of lubricant to each raceway regardless of the mounting orientation. The adapter is economical since it is capable of constantly feeding the optimum amount of lubricant and helping eliminate the supply of surplus lubricant.

To provide pipe arrangement, simply connect an intermittent lubrication pump widely used for ordinary machine tools to the greasing holes (M8) on the front and the side of the lubrication adapter.

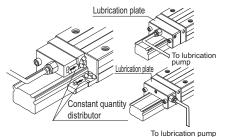


Fig.1 Structural Drawing

[Specifications]

Viscosity range of lubricant used	32 to 64 mm²/s recommended
Discharge	0.03×4, 0.06×4cc/1shot
Diameter of pipe connected	<i>φ</i> 4, <i>φ</i> 6
Material	Aluminum alloy

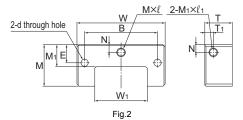
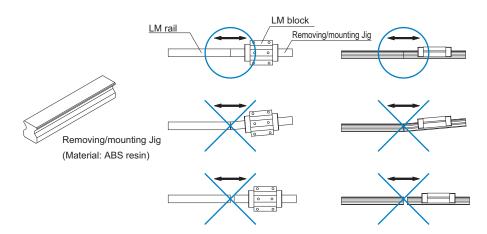


Table1 Dimension Table for Lubrication Adapter

Unit: mm


					ı	Main di	mensio	ns					Quantity
Model No.	Width W	Height M	т	W ₁	M ₁	В	Е	Ν	T ₁	d	Μ×ℓ	$M_1 \times \ell_1$	per shot (cc/shot)
A30N	56	29	25	29	14.5	46	14	5	5.3	3.5	M8×8	M8×8	
A35N	66	33	25	35	17	54	16.5	6	5.3	4.5	M8×8	M8×8	0.03×4
A45N	81	38	25	48	20	67	16.5	7	7.8	6.6	M8×8	M8×8	
A55N	94	45.5	25	56	22	76	20.5	7	7.8	6.6	M8×8	M8×8	
A65N	119	55.5	25	67	26.3	92	25.5	11.5	7.8	9	M8×8	M8×8	0.06×4
A85N	147	68.5	25	92	34	114	32	15.5	7.8	9	M8×8	M8×8	

Removing/mounting Jig

When assembling the guide, do not remove the LM block from the LM rail whenever possible. If it is inevitable to remove the LM block due to the plate cover type or the assembly procedure, be sure to use the removing/mounting jig.

Mounting the LM block without using the removing/mounting jig may cause rolling elements to fall from the LM block due to contamination by foreign material, damage to internal components or slight inclination. Mounting the LM block with some of the rolling elements missing may also cause damage to the LM block at an early stage.

When using the removing/mounting jig, do not incline the jig and match the ends of both LM rails. If any of the rolling elements falls from the LM block, contact THK instead of using the product. Note that the removing/mounting jig is not included in the LM Guide package as standard. When desiring to use it, contact THK.

End Piece EP

For those models whose balls may fall if the LM rail is pulled out of the LM block, an end piece is attached to the product to prevent the LM block from being removed from the LM rail.

For models that can use the end piece, see the table below.

If removing the end piece when using the LM Guide, be sure that the LM block will not overshoot. The end piece can also be used as a fixing jig for a steel tape, and is available also for the LM rail of models SSR, SR and HSR.

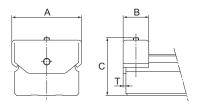
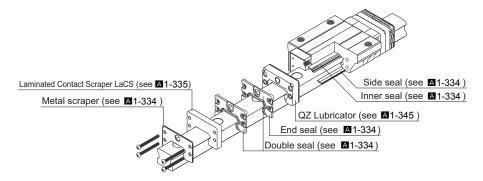
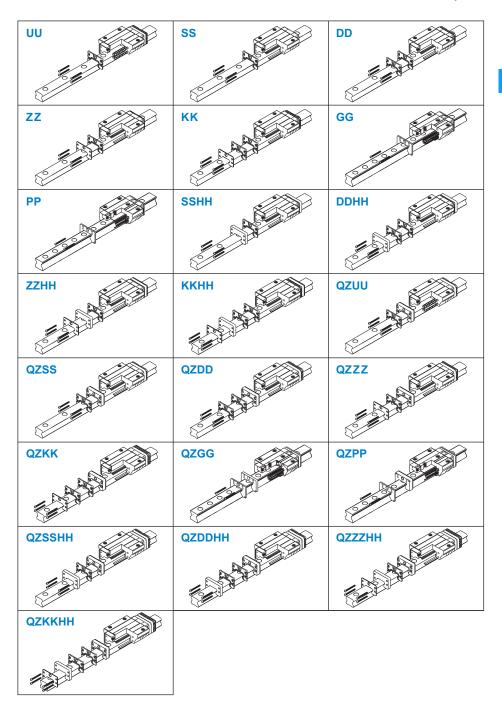


Fig.1 End Piece EP for Models NR/NRS


Table1 Dimension Table for End Piece EP for Models NR/ NRS

Unit: mm


Model No.	Α	В	С	Т
NR/NRS 25X	26	14	25	1.5
NR/NRS 30	31	14	31	1.5
NR/NRS 35	38	16	32.5	2
NR/NRS 45	49	18	41	2
NR/NRS 55	57	20	46.5	2
NR/NRS 65	69.4	22	59	3.2
NR/NRS 75	81.7	28	56	3.2
NR/NRS 85	91.4	22	68	3.2
NR/NRS 100	106.4	25	73	3.2

List of Parts Symbols

●For supported model numbers, see the correspondence table of options by model number on 🖪 1-354.

Symbol	Lubrication/Contamination Protection Accessories
UU	End seal
SS	With end seal + side seal + inner seal
DD	With double seals + side seal + inner seal
ZZ	With end seal + side seal + inner seal + metal scraper
KK	With double seals + side seal + inner seal + metal scraper
GG	LiCS
PP	With LiCS + side seal + inner seal
SSHH	With end seal + side seal + inner seal + LaCS
DDHH	With double seals + side seal + inner seal + LaCS
ZZHH	With end seal + side seal + inner seal + metal scraper + LaCS
KKHH	With double seals + side seal + inner seal + metal scraper + LaCS
QZUU	With end seal + QZ
QZSS	With end seal + side seal + inner seal + QZ
QZDD	With double seals + side seal + inner seal + QZ
QZZZ	With end seal + side seal + inner seal + metal scraper + QZ
QZKK	With double seals + side seal + inner seal + metal scraper + QZ
QZGG	With LiCS + QZ
QZPP	With LiCS + side seal + inner seal + QZ
QZSSHH	With end seal + side seal + inner seal + LaCS + QZ
QZDDHH	With double seals + side seal + inner seal + LaCS + QZ
QZZZHH	With end seal + side seal + inner seal + metal scraper + LaCS + QZ
QZKKHH	With double seals + side seal + inner seal + metal scraper + LaCS + QZ

Table of Supported Options by Models

For the overall length with an option attached, see 11-236 to 11-268.

							C	aged B	all							
			Mod	del No.	*1	*2	*3	*4	*5			*6	*7	*8	*9	
	Type					SSR	SNR SNS	SHW	SRS	SCR	EPF	HSR	SR	NR NRS	HRW	
			Sym- bol	Reference page	A 1-112	A 1-118	A 1-124	▲ 1-132	△ 1-136	△ 1-142	△ 1-146	▲ 1-152	▲ 1-160	△ 1-168	1 1-176	
	En	ıd seal	UU		0	0 *	0	0 *	0	0	_	0 *	0 *	0 *	0 *	
			SS		◇ *	0	◇ *	\Diamond	0 *	0 *	_	\triangle	0	0	\triangle	
[2]	[1]		DD	A1-334	\Diamond	0	\Diamond	\Diamond	_	0	_	\triangle	\triangle	0	\triangle	
[4]	ניו		ZZ	▲1-335	\Diamond	0	\Diamond	\Diamond	_	0	_	\triangle	\triangle	0	\triangle	
			KK		\Diamond	0	\Diamond	\Diamond	1	0	1	\triangle	\triangle	0	\triangle	
	La	CS+[1]	НН		0	0	0	\triangle	\triangle	0	1	\triangle	ı	\triangle	_	
			LL	-	1	-	_	1	1	1	1	\triangle	\triangle	-	_	
end seal		+ Side seal	RR	-	-	-	_	ı	ı	ı	1	0	0	ı	_	
LiCS -			GG	A 1-337	_	0	_	_	_	_	_	-	-	-	_	
			PP	1-007	_	0	_	_	_	_	_	-	-	-	_	
Plate Cover SV		ver SV	Z	A1-342	_	_	\triangle	_	_	_	_	-	-	0	_	
Steel Tape SP		Z	11 042	0	\triangle	\triangle	_	_	_	_	\triangle	\triangle	\triangle	_		
Ded	licated	cap C *15	_	A1-339	0	0	0	0	\triangle	0	_	0	0	0	0	
Dec	dicated	bellows	_	A1-338	■ 1-247	■ 1-248	E 1-249	B 1-250	_	_	_	■ 1-251	■ 1-253	■ 1-255	■ 1-256	
De	edicated	d cover	_	. 000	_	_	_	_	_	_	_	■ 1-260	■ 1-261	_	_	
Tappe	d-hole L	M rail type	K	-	0	0	_	_	_	B 1-61	-	B 1-89	■ 1-97	_	_	
QZ Lubricator QZ+[2] End plate with/without side nipple		QZ	A1-345	0	0	0	0	0	0	_	\triangle	_	\triangle	_		
		_	-	0	0	0	Δ	Δ	0	_	_	_	0	_		
5.5 AP-HC, AP-C, AP-CF		F	A 0-20	0	0	0	0	1	0	ı	0	0	0	0		
AP-HC, AP-C, AP-CF		М	A 0-19	-	Δ	_	Δ	0	_	_	Δ	Δ	_	\triangle		
	Little Plant State Plant	[2] [1] Lau Low-resistance end seal LiCS Plate Co Steel Ta Dedicated Dedicated Dedicated Capped-hole I QZ Lubricator End plate wi side ni AP-HC, AP- Stainless LM Gu	End seal [2] [1] LaCS+[1] Low-resistance end seal LiCS Plate Cover SV Steel Tape SP Dedicated cap C 15 Dedicated bellows Dedicated bellows Dedicated cover [apped-hole LM rail type QZ Lubricator QZ Ly[2] End plate with/without side nipple AP-HC, AP-C, AP-CF Stainless Steel LM Guide	Type	SHS SSR SNR SHW SRS SCR SNR Snr	SHS SSR SNR SHW SRS SCR EPF Sym Reference Sym Sym Shw SRS SCR EPF Sym Sym	SHS SNR Snr	SHS SSR SNR SNR SRS SCR EPF HSR SR SRS SNR Snr	Type	Sym Reference Reference						

- *1. Model SHS: steel tape SP applicable to models SHS15 to 65.
 *2. Model SSR: steel tape SP not applicable to model SSR15; stainless steel type not applicable to model SSR35.
 *3. Models SNR/SNS: plate cover SV applicable to models SNR/SNS35 to 65; steel tape SP applicable to models SNR/SNS25 to 85.
- *4. Model SHW: inner seal and LaCS are not applicable to models SHW12, 14 and 17.
- Models SHW12 and 14 cannot have a grease nipple; instead, a greasing hole is available.

 *5. Model SRS: LaCS applicable to models SRS9to 25.

 Models SRS9M, 9WM, 12M and 12WM cannot have a grease nipple; instead, a greasing hole is available.

 *6. Model HSR: SS applicable to models HSR15 to 150; DD, ZZ and KK applicable to models HSR15 to 65; LaCS -- applicable to models HSR15 to 35;

LL -- applicable to models HSR15 to 65;

LL -- applicable to models HSR15 to 65;
steel tape SP: applicable to models HSR15 to 100; for models HSR8 to 12, only UU is applicable;
stainless steel type - not applicable to some models (contact THK for details).
for model Model HSR-R Grade Ct, only SS is applicable.
*7. Model SR: DD, ZZ and KK -- applicable to models SR15 to 70; LL -- applicable to models SR15 to 25;
steel tape SP: applicable to models SR20 to 70;
for models SR85 to 150, only UU and SS are applicable;
stainless steel type -- not applicable to some models (contact THK for details).

②: Option ○: Applicable △: Not applicable for some models
★: THK recommendation (standard stock product) ◇: With inner seal attached

Full-ball							Ca	ged ro	ller											
	*10 RSR RSR-W	RSR-Z RSR-WZ	RSH	RSH-Z RSH-WZ	*11 HR	GSR	GSR-R	CSR	MX	JR	*12 HCR	HMG	NSR- TBC	HSR- M1	SR- M1	RSR- M1	HSR- M2	*13 SRG	*14 SRN	*15 SRW
	△ 1-182	A1-190	A1-196	△ 1-200	A 1-206	A1-212	A1-218	A1-226	A1-230	A 1-234	1 -240	1 -244	A1-250	△ 1-254	A1-262	▲1-268	1 -274	A 1-282	A 1-288	△ 1-294
	0 *	0	0 *	0	0 *	0 *	0	0	0 *	0	0	0	0	0	0	0	0	0	0	0
	_	△ *	ı	△ *	-	0	0	0	1	0	0	-	0	0	0	1	0	0 *	0 *	0
	_	1	ı	-	-	0	0	0	-	0	\triangle	-	-	-	-	-	-	0	0	0
	_	1	ı	1	-	0	0	0	1	0	\triangle	-	1	-	-	1	-	0	0	0
	-	1	ı	1	1	0	0	0	-	0	\triangle	1	1	1	1	1	1	0	0	0
	_	1	1	-	_	ı	1	1	_	_	-	-	-	_	-	-	-	\triangle	\triangle	0
	_	ı	ı	1	1	ı	ı	0	1	1	0	1	1	1	1	1	1	1	1	_
	_	ı	ı	1	1	ı	ı	0	1	1	0	1	1	1	1	1	1	1	1	_
	_	_	ı	-	_	I	ı	ı	-	_	-	-	-	_	-	-	-	\triangle	_	_
	_	-	ı		_	Ī	Ī	ı	_	_	_	_		_	_		_	\triangle	_	_
	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	\triangle	\triangle	\triangle	\triangle	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0
	_	-	_	_	_	-	_	_	_	_	_	_	■ 1-257	_	_	_	_	■ 1-258	_	■ 1-259
	_	-	_	_	_	-	_	_	_	_	-	-	_	_	-	_	-	_	_	_
	_	-	_	_	_	-	_	■ 1-165	_	_	_	_	_	_	_	_	_	_	_	_
	Δ	_	_	_	-	-	_	_	_	-	_	_	_	-	_	_	_	0	0	0
	-	_	_	-	-	-	-	_	-	-	-	_	-	-	-	-	_	0	0	0
	0	_	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	Δ	_	_	_	0	-	-	-	_	-	-	_	-	_	-	-

- *8. Models NR/NRS: LaCS and QZ applicable to models NR/NRS25 to 65; steel tape SP -- applicable to models NR/NRS25 to 100
 *9. Model HRW: for models HRW12 and 14, only UU and SS is applicable; model HRW17 and 21 cannot have a side seal; stainless steel type – not applicable to models HRW50 and 60 *10. Model RSR: QZ – applicable to models RSR9, 12, 15. *11. Model HR: stainless steel type – applicable to models HR918 to 2555.

For locations where adequate dust prevention cannot be provided with the end seal alone, consider using also a bellows and a cover.

*12. Model HCR: DD, ZZ and KK – may not applicable depending on R; fr

*13. Model SRG: LaCS – applicable to models SRG20 to 65; -- GG and PP

- for model HCR12, only UU is applicable.

- applicable to only model SRG15.

 *14. Model SRN: LaCS applicable to all model numbers except model SRN15.

 *15. Model SRW: LaCS applicable to models SRS70 to 100.

 *16. Dedicated cap C may not be attached depending on the size of the model.

Maximum Seal Resistance

This shows the maximum values for seal resistance per LM block with lubrication applied.

Unit: N

Unit: N

No. 15 20 25	Seal symbol	Maximum Seal Resistance 4.5
20 25		
25		
		7.0
		10.5
30	SS	17.0
35	- 55	20.5
45		30.0
55		31.5
65		43.0
15X		2.0
20X		2.6
25X	UU	3.5
30X		4.9
35X		6.3
25		8
30		14
35		14
45	SS	16
55		20
65		25
85		30
12CA/CR		1.0
12HR		1.0
14		1.2
17	1111	1.4
21	00	4.9
27		4.9
35		9.8
50		14.7
12CA/CR		1.4
12HR		1.8
14		1.8
17	99	2.2
21	33	6.9
27		8.9
35		15.8
50		22.7
	55 65 15X 20X 25X 30X 35X 25 30 35 45 55 65 85 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR	55 65 15X 20X 25X 30X 35X 25 30 35 45 55 65 85 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 12CA/CR 12HR 14 17 21 27 35 50 35 50 12CA/CR 12HR 14 17 21 27 35 35 35 35 35 35 35 35 35 35

		Caal	Unit: N
Mode	l No.	Seal symbol	Maximum Seal Resistance
	5M		0.06
	5WM	UU	0.08
	7M		0.08
	7WM		0.12
	9M		0.2
	9N		0.3
	9WM		1.0
	9WN		1.0
ene.	12M		0.6
SRS	12N		0.6
	12WM	SS	1.3
	12WN		1.4
	15M		1.0
	15N		1.1
	15WM		1.6
	15WN		1.6
	20M		1.3
	25M		1.6
	15		2.5
	20	SS	3
	25		5
SCR	30		10
	35		12
	45		20
	65		30
	8		0.5
	10		8.0
	12		1.2
	15		2.0
	20		2.5
HSR	25	υυ	3.9
пок	30	00	7.8
	35	1	11.8
	45		19.6
	55	1	19.6
	65		34.3
	85		34.3
<u> </u>			

Unit: N

N Unit: N

Mode	l No.	Seal symbol	Maximum Seal Resistance
	15	Syllibol	2.5
	20		3.4
	25		4.4
	30	UU	8.8
SR	35		11.8
	45		12.7
	55		15.7
	70		19.6
	25X		15.0
	30		17
	35		23
	45		24
NR/NRS	55	UU	29
INIVININO	65	00	42
	75		42
	85		42
	100		51
	12		0.2
	14		0.2
	17		2.9
	21		4.9
HRW	27	UU	4.9
	35		9.8
	50		14.7
	60		
	5		19.6 0.06
	7		0.08
	9		0.1
	12		0.4
	15		0.8
	20		1.0
	3W		0.2
	5W		0.3
RSR	7W	UU	0.4
	9W		0.8
	12W		1.1
	14W		1.2
	15W		1.3
	7Z		0.08
	9Z		0.1
	12Z		0.4
	15Z		0.8
	7WZ		0.4

		Seal	Maximum Seal
Mode	l No.	symbol	Resistance
	9WZ		0.8
RSR	12WZ	UU	1.1
	15WZ		1.3
	7		0.08
	9		0.1
	12		0.4
	7Z		0.08
	9Z		0.1
RSH	12Z	UU	0.4
	15Z		0.8
	7WZ		0.4
	9WZ		0.8
	12WZ		1.1
	15WZ		1.3
	918		0.5
	1123		0.7
	1530		1.0
	2042		2.0
HR	2555	UU	2.9
	3065		3.4
	3575		3.9
	4085		4.4
	50105		5.9
	60125		9.8
	15		2.5
	20		3.1
	25		4.4
GSR	30	UU	6.3
JOIN	35		7.6
	25-R		4.4
	30-R		6.3
	35-R		7.6
	15	_	2.0
	20		2.5
CSR	25	UU	3.9
JOIN	30		7.8
	35		11.8
	45		19.6
MX	5	UU	0.06
IVIA	7W		0.4

Unit: N Unit: N

		Seal	Marrian Carl
Mode	l No.	symbol	Maximum Seal Resistance
	25		3.9
JR	35	UU	11.8
JK	45		19.6
	55		19.6
	12		1.2
	15		2.0
HCR	25	UU	3.9
TION	35		11.8
	45		19.6
	65		34.3
	15		3
	25		6
HMG	35	UU	8
	45		12
	65		40
	20TBC		4.9
	25TBC		4.9
NSR	30TBC	UU	6.9
NOIX	40TBC		9.8
	50TBC		14.7
	70TBC		24.5
	15M1		2.0
	20M1		2.5
HSR	25M1	UU	3.9
	30M1		7.8
	35M1		11.8
	15M1		2.5
	20M1		3.4
SR	25M1	UU	4.4
	30M1		8.8
	35M1		11.8

Mode	l No.	Seal symbol	Maximum Seal Resistance
	9M1		0.1
	12M1		0.4
	15M1		0.8
RSR	20M1	UU	1.0
	9M1W		0.8
	12M1W		1.1
	15M1W		1.3
	15M2		2.0
HSR	20M2	UU	2.5
	25M2		3.9
	15		13
	20		18
	25		19
	30		24
SRG	35	SS	30
SINO	45	33	30
	55		35
	65		40
	85		47
	100		53
	35		30
SRN	45	SS	30
Orar	55		35
	65		40
	70		32
	85		37
SRW	100	SS	43
	130		50
	150		57

Maximum resistance for LaCS

Unit: N Unit: N

Model No		Maximum resistance for LaCS		
	15	5.2		
	20	6.5		
	25	11.7		
SHS	30	18.2		
опо	35	20.8		
	45	26.0		
	55	32.5		
	65	39.0		
	15	5.9		
	20	6.9		
SSR	25	8.1		
	30	12.8		
	35	15.1		
	25	8.1		
	30	13.4		
	35	15.5		
SNR/SNS NR/NRS	45	23.3		
	55	28.6		
	65	39.6		
	85	52.7		
	21	3.9		
SHW	27	6.5		
SUM	35	13.0		
	50	19.5		
	9M	2.3		
	9WM	3.3		
SRS	12M	3.5		
	12WM	4.2		
	15M	5.1		

Model No		Maximum resistance for LaCS			
	15WM	7.5			
SRS	20M	5.2			
	25M	7.8			
	15	5.2			
	20	6.5			
	25	11.7			
SCR	30	18.2			
	35	20.8			
	45	26.0			
	65	39.0			
	15	3.8			
	20	5.6			
HSR	25	7.5			
HSR	30	14.9			
	35	22.4			
	20	6.1			
	25	6.9			
	30	8.2			
SRG	35	9.1			
	45	14.3			
	55	18.2			
	65	26.0			
	35	9.1			
SRN	45	14.3			
SIXIN	55	18.2			
	65	22.1			
	70	32.8			
SRW	85	39.7			
	100	58.3			

Note1) Each resistance value in the table only consists of that of LaCS, and does not include sliding resistances of seals and other accessories.

Note2) For the maximum service speed of LaCS, contact THK.

Maximum resistance for LiCS

Unit: N

Mode	el No.	Maximum resistance for LiCS
	15X	1
	20X	1.1
SSR	25X	1.6
	30X	1.6
	35X	2
SRG	15	0.7

Note) The value indicates the sliding resistance of two LiCS units per LM block and does not include the sliding resistances of the LM block and the side seals.

Greasing Hole

[Grease Nipple and Greasing Hole for Models SHW and SRS]

Models SHW and SRS do not have a grease nipple as standard. Installation of a grease nipple and the drilling of a greasing hole is performed at THK. When ordering SHW and SRS, indicate that the desired model requires a grease nipple or greasing hole. (For greasing hole dimensions and supported grease nipple types and dimensions, see Table1.)

When using SHW and SRS under harsh conditions, use QZ Lubricator* (optional) or Laminated Contact Scraper LaCS* (optional).

Note1) Grease nipple is not available for models SHW12, SHW14, SRS5M, SRS5WM, SRS7M, SRS7WM, SRS7WM, SRS9M, SRS9WM, SRS12M and SRS12WM. They can have a greasing hole.

Note2) Using a greasing hole other than for greasing may cause damage.

Note3) For QZ Lubricator*, see ■1-345. For Laminated Contact Scraper LaCS*, see ■1-335.

Note4) When desiring a grease nipple for a model attached with QZ Lubricator, contact THK.

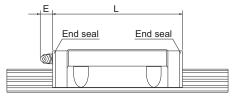


Fig.1 Dimensions of the Grease Nipple for Model SHW

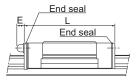
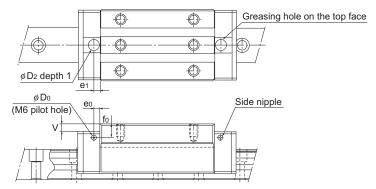


Fig.2 Dimensions of the Grease Nipple for Model SRS Note) For the L dimension, see the corresponding specification table.

Table 1 Table of Grease Nipple and Greasing Hole Dimensions

Unit: mm

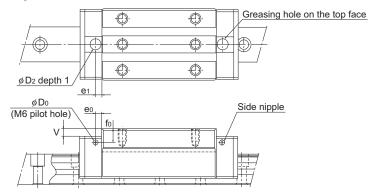

			Offic. Hilli
Мо	odel No.	Е	Grease nipple or greasing hole
	12	_	ϕ 2.2 drilled hole
	14	_	φ2.2 drilled hole
	17	5	PB107
SHW	21	5.5	PB1021B
	27	12	B-M6F
	35	12	B-M6F
	50	16	B-PT1/8
	5M	_	ϕ 0.8 drilled hole
	5WM	_	ϕ 0.8 drilled hole
	7M	_	ϕ 1.2 drilled hole
	7WM	_	ϕ 1.2 drilled hole
	9 M/N	_	ϕ 1.5 drilled hole
	9 WM/WN	_	ϕ 1.6 drilled hole
SRS	12 M/N	-	ϕ 2.0 drilled hole
	12 WM/WN	_	ϕ 2.0 drilled hole
	15 M/N	4.0 (5.0)	PB107
	15 WM/WN	4.0 (5.0)	PB107
	20M	3.5 (5.0)	PB107
	25M	4.0 (5.5)	PB1021B
	20M	3.5 (5.0)	PB107

Note) Figures in the parentheses indicate dimensions without a seal.

[Greasing Hole for Model SRG]

Model SRG allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.

When using the greasing hole on the top face of models SRG-R and SRG-LR, a greasing adapter is separately required. Contact THK for details.

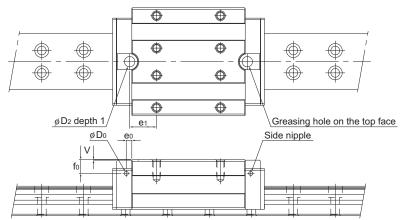

Unit: mm

Mode	el No.	Pilot h	nole for side	nipple	Applicable	Greasing hole on the top face							
WOO		e₀	f ₀	D ₀	nipple	D ₂	(O-ring)	V	e ₁				
	15A 15V	4	4	2.9	PB107	9.2	(P6)	0.5	5.5				
	20A 20LA	4	5	2.9	PB107	9.2	(P6)	0.5	6.5				
	20V 20LV	4	5	2.9	PB107	9.2	(P6)	0.5	6.5				
	25C 25LC	6	6.3	5.2	M6F	10.2	(P7)	0.5	6				
	25R 25LR	6	10.3	5.2	M6F	10.2	(P7)	4.5	6				
	30C 30LC	6	5.8	5.2	M6F	10.2	(P7)	0.4	6				
	30R 30LR	6	8.8	5.2	.2 M6F 10.2		(P7)	3.4	6				
SRG	35C 35LC	6	6	5.2	M6F	10.2	(P7)	0.4	6				
	35R 35LR	6	13	5.2	M6F	10.2	(P7)	7.4	6				
	45C 45LC	7	7	5.2	M6F	10.2	(P7)	0.4	7				
	45R 45LR	7	17	5.2	M6F	10.2	(P7)	10.4	7				
	55C 55LC	9	8.5	5.2	M6F	10.2	(P7)	0.4	11				
	55R 55LR	9	18.5	5.2	M6F	10.2	(P7)	10.4	11				
	65LC	9	13.5	5.2	M6F	10.2	(P7)	0.4	10				
	65LV	9	13.5	5.2	M6F	10.2	(P7)	0.4	10				
	85LC	15	22	8.2	PT1/8	13	(P10)	0.4	10				
	100LC	15	23	8.2	PT1/8	13	(P10)	0.4	10				

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details.

[Greasing Hole for Model SRN]

Model SRN allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.

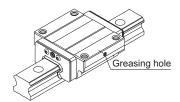

Unit: mm

Mode	el No.	Pilot h	ole for side	nipple	Applicable	Greasing hole on the top face						
Wiode		e₀	f o	D₀	nipple	D ₂	(O-ring)	V	e ₁			
	35C 35LC 8 6.5 5.2			M6F	10.2	0.4	6					
	35R 35LR	8	6.5	5.2	M6F	10.2	(P7)	0.4	6			
	45C 45LC	8.5	7	5.2	M6F	10.2	(P7)	0.4	7			
SRN	45R 45LR	8.5	7	5.2	M6F	10.2	(P7)	0.4	7			
	55C 55LC	10	8	5.2	M6F	10.2	(P7)	0.4	11			
	55R 55LR	10	10 8 5.2		M6F	10.2	(P7)	0.4	11			
	65LC	9	11	5.2	M6F	10.2	(P7)	0.4	10			
	65LR	9	11	5.2	M6F	10.2	(P7)	0.4	10			

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details.

[Greasing Hole for Model SRW]

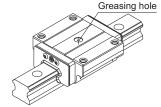
Model SRW allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.


Unit: mm

Mode	el No.	Pilot h	ole for side	nipple	Applicable	Greasing hole on the top face							
WIOG	ei ivo.	e₀	f o	D ₀	nipple	D ₂	(O-ring)	V	e ₁				
	70	7	17	5.2	M6F	13	(P10)	0.4	33.7				
	85	9	17.7	5.2	M6F	13	(P10)	0.4	42.75				
SRW	100	9	22.4	5.2	M6F	13	(P10)	0.4	55				
	130	15	42	8.2	B-PT1/8	13	(P10)	0.4	10				
	150	15	53	8.2	B-PT1/8	13	(P10)	0.4	10				

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details.

[Semi-standard Greasing Hole for Model HSR]


For model HSR, a semi-standard greasing hole is available. Specify the appropriate model number according to the application.

Type with a Greasing Hole Drilled on the Side Surface

[Lubrication for Model HR]

The LM block has a greasing hole in the center of its top face. To provide lubrication through this hole, the table must be machined to also have a greasing hole as shown in Fig.3 and attach a grease nipple or the like. When using oil lubrication, it is necessary to identify the lubrication route. Contact THK for details.

Type with a Greasing Hole Drilled on the Top Face

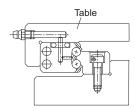
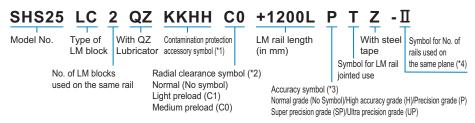


Fig.3 Example of Machining a Greasing Hole

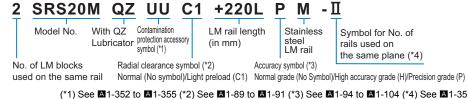

Model No. LM Guide

Model Number Coding

Model number configurations differ depending on the model features. Refer to the corresponding sample model number configuration.

[LM Guide]

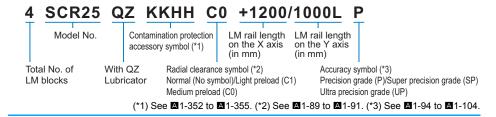
 Accuracy Standards for Models SHS, SSR, SNR/SNS, SHW, HSR, SR, NR/NRS, HRW, JR, NSR-TBC, HSR-M1, SR-M1 and HSR-M2.



(*1) See 🖪 1-352 to 🖪 1-355 (*2) See 🖪 1-89 to 🖪 1-91 (*3) See 🖪 1-94 to 🖪 1-104 (*4) See 🖪 1-35

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

[Miniature Type LM Guide]


Models SRS, RSR, RSR-Z, RSH, RSH-Z and RSR-M1

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

[Cross LM Guide]

Models SCR, CSR and MX

[Separate LM Guides]

Model HR

Contamination protection Model No. accessory symbol (*1)

LM rail length (in mm)

Symbol for Stainless steel LM rail LM rail jointed use

No. of LM blocks used on the same rail Stainless steel I M block

Accuracy symbol (*2)

Normal grade (No Symbol)/High accuracy grade (H)/Precision grade (P) Super precision grade (SP)/Ultra precision grade (UP)

(*1) See \$\textstyle{\textstyle{\textstyle{1}}} -352 to \$\textstyle{\textstyle{1}} -355. (*2) See \$\textstyle{\textstyle{1}} -94 to \$\textstyle{\textstyle{1}} -104.

Note) One set of model HR means a combination of two LM rails and an LM blocks used on the same plane.

Model GSR

LM block

LM rail

GSR25

Model Contamination protection number accessory symbol (*1)

Type of LM block

-1060L GSR25

> Model LM rail length number (in mm)

Symbol for tapped-hole LM rail type

Accuracy symbol (*2) Normal grade (No Symbol) High accuracy grade (H) Precision grade (P)

(*1) See A1-352 to A1-355. (*2) See A1-94 to A1-104.

Combination of LM rail and LM block

+1060L GSR25 т UU

Model No. Type of LM block

Contamination protection

LM rail length (in mm) accessory symbol (*1)

Symbol Symbol for for LM rail tapped-hole LM rail type

jointed use

No. of LM blocks Accuracy symbol (*2)

Normal grade (No Symbol)/High accuracy grade (H)/Precision grade (P)

(*1) See A1-352 to A1-355. (*2) See A1-94 to A1-104.

Note) One set of model GSR: This model number indicates that a single-rail unit constitutes one set.

[R Guide]

Model HCR

HCR25A +60 / 1000R C1

Model No.

Contamination protection accessory symbol (*1)

R-Guide center angle

LM rail radius (in mm)

Symbol for LM rail iointed use

No. of LM blocks

Radial clearance symbol (*2)

Accuracy symbol (*3)

used on the same rail Normal (No symbol)/Light preload (C1)

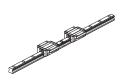
Normal grade (No Symbol)/High accuracy grade (H) (*1) See A1-352 to A1-355. (*2) See A1-89 to A1-91. (*3) See A1-94 to A1-104.

When 2 rails are used

HMG15A 2 UU C1 +1000L T + 60/150R 6T + 60/300R 6T - II

Mode	del No. Contamination protection accessory symbol (*1)		Overall linear LM r length per rail			J	No. of in		Radius curved		.,	ol for rails (*2)
No.	of LM blocks	Radial clea	rance symbol	Symbo	ol for li	near Ra	idius of inn	er Cent	er angle of	one N	o. of oute	r curved
per	rail	Normal (No syr	mbol)/Light preload (C1)	LM rai	l joint	cu	rved rail	outer	curved rai	i L	M rails joi	nted

(*1) See \$\textit{\Omega}1-355\$ to \$\textit{\Omega}1-352\$. (*2) See \$\textit{\Omega}1-35\$.

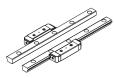

Note) This model number denotes one set consists of an LM block and LM rail. (i.e. If you are using 2 shafts, the required number of sets is 2.) Model HMG does not have a seal as standard.

Notes on Ordering

[Order units]

Note that the number of items that constitute one set differs depending on the type of LM guide. Check the sample model number configurations and the accompanying notes.

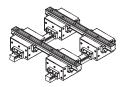
Sample LM guide orders



SHS25C2SSC1+640L 1 set

SHS25C2SSC1+640L-II 2 sets

Sample model HR orders


HR2555UU+600L 1 set

Sample model GSR and GSR-R orders

GSR25T2UU+1060L 2 sets

Sample cross LM guide orders (SCR, CSR and MX)

4SCR25UU+1200/1000LP 1 set

• Sample model HMG orders

HMG15A 2 UU C1 +1000L T + 60/150R 6T + 60/300R 6T - II 2 sets

Note) When ordering model HMG, attach a reference diagram clearly showing the positioning of the LM block and LM rail.

[Mounted orientation and lubrication method]

When ordering, always detail the LM guide mounting orientation and lubrication method.

[Supported options]

The supported options differ depending on the model number. Check the available options when ordering.

see A1-354.

[Maximum manufactured lengths for LM rails]

Where a high degree of precision is required, limits apply to the maximum manufactured lengths for LM rails. In such situations, contact THK.

Precautions on Using the LM Guide

[Handling]

- (1) This product consists mostly of heavy items (20 kg or more). When moving heavy items, use 2 or more people or moving equipment. This could cause injury or product damage.
- (2) Do not disassemble the parts. This will cause dust to enter the product resulting in loss of functionality.
- (3) Tilting an LM block or LM rail may cause them to fall by their own weight.
- (4) Take care not to drop or strike the LM guide. This could cause injury or product damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- (5) Prevent foreign material, such as dust or cutting chips, from entering the system. This could cause damage to ball circulation components and loss of functionality.
- (6) When planning to use the LM system in an environment where the coolant penetrates the LM block, it may cause trouble to product functions depending on the type of the coolant. Contact THK for details.
- (7) Do not use the product at temperature of 80 °C or higher. Contact THK if you desire to use the product at a temperature of 80 °C or higher.
- (8) If foreign material such as dust or cutting chips adheres to the product, replenish the lubricant after cleaning the product with pure white kerosene. For available types of detergent, contact THK.
- (9) If an LM guide will be in an inverted orientation, take preventive measures such as adding a safety mechanism to prevent falls. If the end plate is damaged due to an accident, etc., balls may fall out of the guide or the LM block become detached from the LM rail and fall down.
- (10) When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- (11) When removing the LM block from the LM rail and then replacing the block, an LM block mounting/removing jig that facilitates such installation is available. Contact THK for details.

[Lubrication]

- (1) Thoroughly remove anti-rust oil and feed lubricant before using the product.
- (2) Do not mix lubricants of different physical properties.
- (3) In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- (4) When planning to use a special lubricant, contact THK before using it.
- (5) When adopting oil lubrication, the lubricant may not be distributed throughout the LM system depending on the mounting orientation of the system. Contact THK for details.
- (6) Lubrication interval varies according to the conditions. Contact THK for details.

[Storage]

When storing the LM Guide, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

Precautions on Using Options for the LM Guide

QZ Lubricator for the LM Guide

[Precaution on Selection]

Secure a stroke longer than the overall LM block with QZ Lubricator attached.

[Handling]

Take care not to drop or strike this product. This could cause injury or product damage.

Do not block the vent hole with grease or the like.

QZ is a lubricating device designed to feed a minimum amount of oil to the raceway, and does not provide an anti-rust effect to the whole LM Guide. When using it in an environment subject to a coolant or the like, we strongly recommend applying grease to the mounting base of the LM Guide and to the rail ends as an anti-rust measure.

[Service environment]

Be sure the service temperature of this product is between -10 to $+50^{\circ}$ C, and do not clean the product by immersing it in an organic solvent or white kerosene, or leave it unpacked. When using it out of the service temperature range, contact THK in advance.

When desiring to use the product in a special environment, contact THK.

Laminated Contact Scraper LaCS, Side Scraper for LM Guides

[Handling]

The lubricant impregnated into the scraper is used to increase its sliding capability. For lubrication of the LM Guide, attach QZ Lubricator, or the grease nipple on the side face of the end plate of the LM block, before providing a lubricant.

When using the product, be sure to attach the rail cap C or the plate cover.

[Service environment]

Be sure the service temperature of this product is between -20 to +80°C, and do not clean the product by immersing it in an organic solvent or white kerosene, or leave it unpacked.

[Notes on the Product Functions]

It is specifically designed to provide dust prevention capability to remove foreign material and liquid. To seal oil, an end seal is required.

Light Contact Seal LiCS for LM Guides

[Handling]

The lubricant impregnated into LiCS is used to increase its sliding capability. For lubrication of the LM Guide, attach the grease nipple on the end plate of the LM block before providing a lubricant.

[Service environment]

Be sure the service temperature of this product is between -20 to +80 $^{\circ}$ C, and do not clean the product by immersing it in an organic solvent or white kerosene, or leave it unpacked.

It contacts only with the LM rail raceway. Do not use it in harsh environments.

Cap GC

[Handling]

If GC caps are specified for the product, the edges of the LM rail mounting hole openings will be sharp. Take great care not to injure your fingers or hands while working.

When fitting GC caps, use a flat aligning tool to gradually punch the cap into the hole until it is level with the upper surface of the LM rail. Then run an oil stone over the rail until the upper surface of the rail and the GC caps are completely flat.

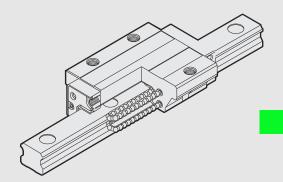
LM Guide®

冗出版 General Catalog

LM Guide

冗景 General Catalog

■ Product Specifications


Dimensional Drawing, Dimensional Table Caged Ball LM Guide		
Model SHS	В	1-5
Model SSR	В	1-15
Model SNR/SNS	В	1-25
Model SHW	В	1-43
Model SRS	R	1_40
Model SCR	B	1-57
Model EPF	D	1 62
	В	1-03
LM Guide		
Model HSR		1 07
Model SR	В	1-0/
Model NR/NRS	B.	1-91
• Model NR/NRS	В	1-99
Model HRW	В	1-113
Model RSR	В	1-119
Model RSR-Z	В	1-129
Model RSH	В	1-135
Model RSH-Z	В	1-139
Model HR	В	1-145
Model GSR	В	1-153
Model GSR-R	В	1-157
Model CSR	В	1-161
Model MX	В	1-167
Model JR	В	0. 1-171
Model HCR	В	<i>.</i> . 1-177
Model HMG	B	1-121
Model NSR-TBC	R	1-101
• Model HSR-M1		
• Model SR-M1		1-191
Model RSR-M1		1-201
Model HSR-M2	В	1-207
Woder FISK-WZ	В	1-213
Caged Roller LM Guide		
Model SRG	D.	1 217
Model SRN	D D	1-217
Model SRW	B.	1-225
• Woder Sixw	В.	1-231
Ontions	_	
Options	B	1-235
The LM Block Dimension (Dimension L) with LaCS and Seals Attached	В	1-236
Incremental Dimension with Grease Nipple (When LaCS is Attached)	В	1-243
LM Block Dimension (Dimension L) with LiCS Attached	В	1-245
Incremental Dimension with Grease Nipple (When LiCS is Attached)	В	1-246
Bellows	В	1-247
• LM cover	В	1-260
• Cap C	В	1-262
• Cap GC	B	1-263
 LM Block Dimension (Dimension L) with QZ Attached 	В	1-264
Lubrication Adapter	В	1-267
End Piece EP	В	1-268
Greasing Hole	B	1-260
Rack and Pinion	R	1-272
	-	. 212

▲ Technical Descriptions of the Products (Separate)

Features and Types	A1-4
eatures of the LM Guide	A1-4
• Large Permissible Load and High Rigidity	A 1-5
High Precision of Motion	A 1-7
Accuracy Averaging Effect by Absorbing Mounting Surface Error	A1-10
Easy Maintenance	A1-12
• Improved Productivity of the Machine	A1-12
Substantial Energy Savings	A1-13
Low Total Cost	A1-14
• Ideal Four Raceway, Circular-Arc Groove,	
Two-Point Contact Structure	A1-15
Superb Error-Absorbing Capability with the DF Design.	A1-19
Classification Table of the LM Guides	A 1-20
Point of Selection	A1-22
Flowchart for Selecting an LM Guide	A1-22
Selecting a Type	A1-24
Types of LM Guides	A1-24
Setting Conditions	A1-34
Conditions of the LM Guide	A1-34
Calculating the Applied Load	A 1-50
 Rated Load of an LM Guide in Each Direction 	A 1-50
Calculating an Applied Load	A1-51
Calculating the Equivalent Load	A 1-70
Calculating the Static Safety Factor	
Calculating the Average Load	A1-72
Example of Calculating the Average Load (1)	
- with Horizontal Mount and Acceleration/Deceleration Considered.	A 1-74
Example of Calculating the Average Load (2)	
- When the Rails are Movable	A 1-75
Calculating the Nominal Life	A1-76
Nominal Life Equation for an LM Guide Using Balls.	A 1-76
Rated Life Equation for an LM Guide Using Rollers .	A 1-76
Example of Calculating the Nominal Life (1)	
- with Horizontal Mount and High-speed Acceleration	A 1-79
Example of Calculating the Nominal Life (2) Was a second control of the Nominal Life (2) The second control of	
- with Vertical Mount	
Predicting the Rigidity • Selecting a Radial Clearance (Preload)	A 1-87
Service Life with a Preload Considered	A1-87
Rigidity	A 1-88
Radial Clearance Standard for Each Model .	A1-88
Determining the Accuracy	A1-89
Accuracy Standards	A11-92
Guidelines for Accuracy Grades by Machine Type .	M1 02
Accuracy Standard for Each Model	M1 04
Feature of Each Model	A1-105
Structure and Features of the Caged Ball LM Guide	A1-106
Advantages of the Ball Cage Technology	A1-107

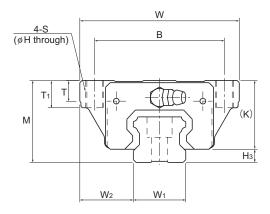
Caged Ball LM Guide 1-112	Mounting Procedure and Maintenance	A1-322
• Model SHS	Mounting the LM Guide	A 1-322
• Model SSR	Mounting Procedure	A 1-322
Model SNR/SNS 🔼 1-124	 Methods for Measuring Accuracy after Installation 	A1-33
• Model SHW	 Recommended Tightening Torque for LM Rails. 	A 1-33
• Model SRS		
• Model SCR	Options	A1-33
• Model EPF	Contamination Protection	■1-33/
	Seal and Metal Scraper	■1-334
LM Guide	Laminated Contact Scraper LaCS	■1-33!
• Model HSR	Light-Resistance Contact Seal LiCS	■1-33
• Model SR	Dedicated bellows	A1-338
• Model NR/NRS	Dedicated LM Cover	■1-338
• Model HRW	• Cap C	A1-339
• Model RSR	• Cap GC	■1-34(
• Model RSR-Z	Plate Cover SV Steel Tape SP	A 1-34
• Model RSH	•	M 1 O-12
• Model RSH-Z	Lubrication	Δ1-3 <i>Δ</i> 4
• Model HR	QZ Lubricator	A1-34
• Model GSR	Lubrication Adapter	■1-348
• Model GSR-R	Removing/mounting Jig	A1-349
• Model CSR	End Piece EP	■1-35(
• Model MX	•	
• Model JR	List of Parts Symbols	A1-350
• Model HCR	•	
• Model HMG	Table of Supported Options by Models	A1-354
• Model NSR-TBC	., , ,	
Model HSR-M1	Dimensions of Each Model with an Option Attached	
• Model SR-M1	Seal resistance value	A 1-356
• Model RSR-M1	Resistance of LaCS	A1-359
• Model HSR-M2	Maximum Seal Resistance of LiCS	A 1-360
	Greasing Hole	A 1-36
Structure and Features of the Caged Roller LM Guide 1-278	·	
 Advantages of the Caged Roller Technology. A1-279 	Model No	A 1-366
	Model Number Coding	A 1-366
Caged Roller LM Guide 41-282	Notes on Ordering	A1-368
• Model SRG		
• Model SRN	Precautions on Use	A 1-370
• Model SRW 🔼 1-294	Precautions on Using the LM Guide	A 1-370
	Precautions on Using Options for the LM Guide	A 1-37
Point of Design	QZ Lubricator for the LM Guide	A 1-37
Designing the Guide System 1-300	 Laminated Contact Scraper LaCS, Side Scraper for LM Guides 	A 1-37
 Examples of Arrangements of the Guide System ▲1-300 	 Light Contact Seal LiCS for LM Guides 	A 1-37
 Method for Securing an LM Guide to Meet the Conditions . ■1-304 	• Cap GC	A 1-372
Designing a Mounting Surface ▲1-306		
Designing a Mounting Surface ▲1-306		
 Shoulder Height of the Mounting Base and the Corner Radius .		
 Permissible Error of the Mounting Surface ▲1-315 		
 Marking on the Master LM Guide and Combined Use . M1-320 		

^{*} Please see the separate "A Technical Descriptions of the Products".

SHS

Caged Ball LM Guides

Product Specifications


Models S Models S	nal Drawing, Dimensional Table BHS-C and SHS-LC BHS-V and SHS-LV BHS-R and SHS-LR	■ 1-6 ■ 1-8 ■ 1-10
of the L	Length and Maximum Length M Rail Dle LM Rail Type of Model SHS	■ 1-12 ■ 1-13
The LM B with La Increment (When	clock Dimension (Dimension L) CS and Seals Attached al Dimension with Grease Nipple LaCS is Attached) d Bellows JSH for Model SHS	B1-235 B1-236 B1-243 B1-247
Cap GC LM Block	c Dimension (Dimension L) Z Attached	■ 1-262 ■ 1-263 ■ 1-264

▲ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models SHS-C and SHS-LC

	Outer	dimer	nsions				LM b	lock o	dimen	sions	3				side nipple**		
Model No.	Height M	Width	Length	В	С	S	н	L ₁	Т	T ₁	К	N	Е	Grease nipple	e ₀	fo	Do
SHS 15C SHS 15LC	24	47	64.4 79.4	38	30	M5	4.4	48 63	5.9	8	21	5.5	5.5	PB1021B	4	4	3
SHS 20C SHS 20LC	30	63	79 98	53	40	M6	5.4	59 78	7.2	10	25.4	6.5	12	B-M6F	4.3	5.3	3
SHS 25C SHS 25LC	36	70	92 109	57	45	M8	6.8	71 88	9.1	12	30.2	7.5	12	B-M6F	4.5	5.5	3
SHS 30C SHS 30LC	42	90	106 131	72	52	M10	8.5	80 105	11.5	15	35	8	12	B-M6F	5.8	6	5.2
SHS 35C SHS 35LC	48	100	122 152	82	62	M10	8.5	93 123	11.5	15	40.5	8	12	B-M6F	6.5	5.5	5.2
SHS 45C SHS 45LC	60	120	140 174	100	80	M12	10.5	106 140	14.1	18	51.1	10.5	16	B-PT1/8	8	8	5.2
SHS 55C SHS 55LC	70	140	171 213	116	95	M14	12.5	131 173	16	21	57.3	11	16	B-PT1/8	10	8	5.2
SHS 65C SHS 65LC	90	170	221 272	142	110	M16	14.5	175 226	18.8	24	71	19	16	B-PT1/8	10	12	5.2

Model number coding

SHS25 LC 2 QZ KKHH C0 +1200L P T Z -II

Model Typ number LM

Type of LM block With QZ Lubricator Contamination protection accessory symbol (*1)

LM rail length (in mm)

With steel tape

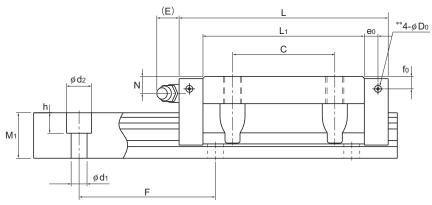
Symbol for LM rail jointed use

Symbol for No. of rails used on the same plane (*4)

Pilot hole for

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)


Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on \$\textstyle{\textstyle{1}}\)-352. (*2) See \$\textstyle{\textstyle{1}}\)-89. (*3) See \$\textstyle{\textstyle{1}}\)-95. (*4) See \$\textstyle{\textstyle{1}}\)-352.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

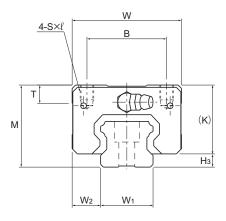
Those models equipped with QZ Lubricator cannot have a grease nipple.

Medium preload (C0)

Unit: mm

			LM	rail d	mensions			sic rating			permi: nent kN			Mass	
	Width		Height	Pitch		Length*	O	C°) 5		M _B		j) ¤	LM block	LM rail
Н₃	W ₁ 0 -0.05	W ₂	M1	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
3	15	16	13	60	4.5×7.5×5.3	2500	14.2 17.2		0.175 0.296	0.898 1.43	0.175 0.296		0.16 0.212	0.23 0.29	1.3
4.6	20	21.5	16.5	60	6×9.5×8.5	3000	22.3 28.1		0.334 0.568	_	0.334 0.568	-	0.361 0.473	0.46 0.61	2.3
5.8	23	23.5	20	60	7×11×9	3000	31.7 36.8		0.566 0.848		0.566 0.848		0.563 0.696	0.72 0.89	3.2
7	28	31	23	80	9×14×12	3000	44.8 54.2	66.6 88.8	0.786 1.36	4.08 6.6	0.786 1.36	4.08 6.6	0.865 1.15	1.34 1.66	4.5
7.5	34	33	26	80	9×14×12	3000	62.3 72.9	96.6 127	1.36 2.34	6.76 10.9	1.38 2.34	6.76 10.9	1.53 2.01	1.9 2.54	6.2
8.9	45	37.5	32	105	14×20×17	3090	82.8 100	126 166	2.05 3.46	10.1 16.3	2.05 3.46	10.1 16.3	2.68 3.53	3.24 4.19	10.4
12.7	53	43.5	38	120	16×23×20	3060	128 161	197 259	3.96 6.68	19.3 31.1	3.96 6.68	19.3 31.1	4.9 6.44	5.35 6.97	14.5
19	63	53.5	53	150	18×26×22	3000	205 253	320 408	8.26 13.3	40.4 62.6	8.26 13.3	40.4 62.6	9.4 11.9	10.7 13.7	23.7

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other


than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-12.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SHS-V and SHS-LV

	Oute	r dimen	sions		LM block dimensions										Pilot hole for side nipple**			
lo.	Height M	Width	Length L	В	С	s×ℓ	L ₁	Т	К	Ν	E	Grease nipple	e o	fo	D ₀			
	24	34	64.4 79.4	26	26 34	M4×4	48 63	5.9	21	5.5	5.5	PB1021B	4	4	3			
	30	44	79 98	32	36 50	M5×5	59 78	8	25.4	6.5	12	B-M6F	4.3	5.3	3			
	36	48	92 109	35	35 50	M6×6.5	71 88	8	30.2	7.5	12	B-M6F	4.5	5.5	3			
	42	60	106 131	40	40 60	M8×8	80 105	8	35	8	12	B-M6F	5.8	6	5.2			
	48	70	122 152	50	50 72	M8×10	93 123	14.7	40.5	8	12	B-M6F	6.5	5.5	5.2			
	60	86	140 174	60	60 80	M10×15	106 140	14.9	51.1	10.5	16	B-PT1/8	8	8	5.2			
	70	100	171 213	75	75 95	M12×15	131 173	19.4	57.3	11	16	B-PT1/8	10	8	5.2			
	90	126	221 272	76	70 120	M16×20	175 226	19.5	71	19	16	B-PT1/8	10	12	5.2			
		Height M 24 30 36 42 48 60 70	Height Width M W 24 34 30 44 36 48 42 60 48 70 60 86 70 100	M W L 24 34 64.4 79.4 30 44 79 30 44 98 36 48 92 109 42 60 106 131 48 70 122 152 60 86 140 171 70 100 171 213	Height Width Length M W L B 24 34 64.4 79.4 26 30 44 79.8 32 36 48 92 35 42 60 106 101 131 48 70 122 50 60 86 140 174 60 70 100 171 75 90 126 221 76	Height Width Length M W L B C 24 34 64.4 26 26 34 79.4 26 34 30 44 79 32 50 36 48 92 35 50 42 60 106 40 60 131 40 60 48 70 122 50 72 60 86 140 60 80 70 100 171 75 95 90 126 221 76 70	Height Width Length M W L B C S×ℓ 24 34 64.4 79.4 26 34 M4×4 30 44 79.8 32 36 M5×5 36 48 92 35 50 M6×6.5 42 60 106 40 M8×8 48 70 122 50 72 M8×10 60 86 140 60 60 M10×15 70 100 171 75 95 M12×15 90 126 221 76 70 M16×20	Height Width Length M W L B C S×l L₁ 24 34 64.4 26 26 34 M4×4 48 63 30 44 79.4 26 35 M5×5 78 36 48 92 35 50 M5×5 78 36 48 92 35 50 M6×6.5 71 88 42 60 106 106 40 60 M8×8 105 48 70 122 50 72 M8×10 93 123 60 86 140 60 60 M10×15 106 140 70 100 171 75 75 M12×15 173 70 100 171 75 95 M12×15 173 90 126 221 76 70 M16×20 175	Height Width Length M W L B C S×ℓ L₁ T 24 34 64.4 79.4 26 26 M4×4 63 5.9 30 44 79 32 50 M5×5 78 8 36 48 92 35 50 M6×6.5 71 88 42 60 106 40 M8×8 80 8 42 60 106 40 M8×8 105 48 70 122 50 50 M8×10 93 123 14.7 60 86 140 60 80 M10×15 106 14.9 70 100 171 75 75 75 M12×15 131 19.4	Height Width Length	Height Width Length M W L B C S×ℓ L₁ T K N 24 34 64.4 79.4 26 26 M4×4 63 5.9 21 5.5 30 44 79.8 32 50 M5×5 78 8 25.4 6.5 36 48 92 35 50 M6×6.5 71 8 30.2 7.5 42 60 106 40 M8×8 80 8 35 8 48 70 122 50 72 M8×10 93 14.7 40.5 8 60 86 140 60 60 M10×15 106 14.9 51.1 10.5 70 100 171 75 95 M12×15 131 19.4 57.3 11	Height Width Length M W L B C S×l L T K N E 24 34 64.4 79.4 26 36 M4×4 63 5.9 21 5.5 5.5 30 44 79 83 22 36 M5×5 59 8 25.4 6.5 12 36 48 92 109 35 50 M6×6.5 71 8 30.2 7.5 12 42 60 106 40 M8×8 80 8 35 8 12 48 70 122 50 50 M8×10 93 123 14.7 40.5 8 12 48 70 122 50 50 M8×10 93 123 14.7 40.5 8 12 60 86 140 60 80 M10×15 106 14.9 51.1 10.5 16 70 100 171 75 75 75 M12×15 131 19.4 57.3 11 16	Height Width Length M W L B C S×ℓ L₁ T K N E 24 34 64.4 26 36 34 M4×4 63 5.9 21 5.5 5.5 PB1021B 30 44 79.4 35 50 M5×5 59 8 25.4 6.5 12 B-M6F 36 48 92 35 35 M6×6.5 71 8 30.2 7.5 12 B-M6F 42 60 106 40 M8×8 80 105 8 35 8 12 B-M6F 48 70 122 50 50 M8×10 93 14.7 40.5 8 12 B-M6F 60 86 140 60 80 M10×15 106 14.9 51.1 10.5 16 B-PT1/8 70 100 171 75 75 75 M12×15 131 19.4 57.3 11 16 B-PT1/8	Name	Height Width Length Width Width Width Width Length Width Wid			

Model number coding SHS30

KKHH C1 +1240L

T Model Type of number LM block

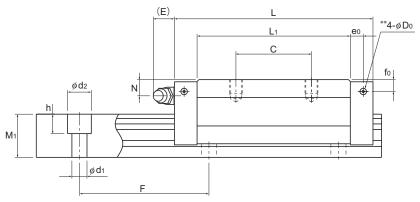
With QZ Lubricator

Contamination protection accessory symbol (*1)

LM rail length (in mm)

With steel tape Symbol for LM rail plane (*4) jointed use

Symbol for No. of rails used on the same


No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Medium preload (C0)

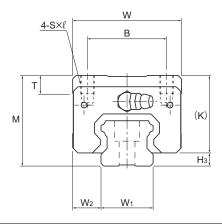
Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP) (*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-89. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

Unit: mm

			LM	rail d	imensions			sic rating			permi: nent kN			Ма	ss
	Width		Height	Pitch		Length*	O	Co	2 (*	2		ığ) ≽	LM block	LM rail
H₃	W₁ 0 -0.05	W_2	M1	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
3	15	9.5	13	60	4.5×7.5×5.3	2500	14.2 17.2		0.175 0.296		0.175 0.296		0.16 0.212	0.19 0.22	1.3
4.6	20	12	16.5	60	6×9.5×8.5	3000	22.3 28.1		0.334 0.568	1.75 2.8	0.334 0.568	-	0.361 0.473	0.35 0.46	2.3
5.8	23	12.5	20	60	7×11×9	3000	31.7 36.8		0.566 0.848	2.75 3.98	0.566 0.848		0.563 0.696	0.54 0.67	3.2
7	28	16	23	80	9×14×12	3000	44.8 54.2	66.6 88.8	0.786 1.36	4.08 6.6	0.786 1.36	4.08 6.6	0.865 1.15	0.94 1.16	4.5
7.5	34	18	26	80	9×14×12	3000	62.3 72.9	96.6 127	1.38 2.34	6.76 10.9	1.38 2.34	6.76 10.9	1.53 2.01	1.4 1.84	6.2
8.9	45	20.5	32	105	14×20×17	3090	82.8 100	126 166	2.05 3.46	10.1 16.3	2.05 3.46	10.1 16.3	2.68 3.53	2.54 3.19	10.4
12.7	53	23.5	38	120	16×23×20	3060	128 161	197 259	3.96 6.68	19.3 31.1	3.96 6.68	19.3 31.1	4.9 6.44	4.05 5.23	14.5
19	63	31.5	53	150	18×26×22	3000	205 253	320 408	8.26 13.3	40.4 62.6	8.26 13.3	40.4 62.6	9.4 11.9	8.41 10.7	23.7

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.


THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other THK will mount grease inpipes per your logistics.....
than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-12.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SHS-R and SHS-LR

		Oute	r dimen	sions			LM blo	ck din	nensio	ns					t hole nipp	
	Model No.	Height M	Width W	Length L	В	С	s×ℓ	L ₁	Т	К	N	E	Grease nipple	e o	fo	D_0
S	SHS 15R	28	34	64.4	26	26	M4×5	48	5.9	25	9.5	5.5	PB1021B	4	8	3
	SHS 25R SHS 25LR	40	48	92 109	35	35 50	M6×8	71 88	8	34.2	11.5	12	B-M6F	6	9.5	3
	SHS 30R SHS 30LR	45	60	106 131	40	40 60	M8×10	80 105	8	38	11	12	B-M6F	5.8	9	5.2
	SHS 35R SHS 35LR	55	70	122 152	50	50 72	M8×12	93 123	14.7	47.5	15	12	B-M6F	6.5	12. 5	5.2
	SHS 45R SHS 45LR	70	86	140 174	60	60 80	M10×17	106 140	14.9	61.1	20.5	16	B-PT1/8	8	18	5.2
	SHS 55R SHS 55LR	80	100	171 213	75	75 95	M12×18	131 173	19.4	67.3	21	16	B-PT1/8	10	18	5.2

Model number coding

SHS45 KKHH C0 +1200L LR QΖ

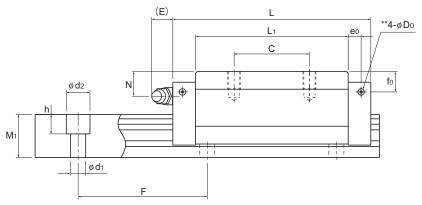
Model number Type of LM block

With QZ Lubricator Contamination protection accessory symbol (*1)

LM rail length (in mm)

Symbol for LM rail jointed use

Symbol for No. of rails used on the same plane (*4)


No. of LM blocks used on the same rail

Radial clearance symbol (*2) Accuracy symbol (*3) Normal (No symbol) Light preload (C1) Medium preload (C0)

Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-89. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

Unit: mm

															Offic. IIIIII
			LM	rail d	imensions			sic rating			permis			Ма	ss
	Width		Height	Pitch		Lengt h*	С	C ₀	2				چ (آئ	LM block	LM rail
Нз	W ₁ 0 -0.05	W ₂	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks		Double blocks	1 block	kg	kg/m
3	15	9.5	13	60	4.5×7.5×5.3	2500	14.2	24.2	0.175	0.898	0.175	0.898	0.16	0.22	1.3
5.8	23	12.5	20	60	7×11×9	3000	31.7 36.8	-	0.556 0.848	-	0.566 0.848	-	0.563 0.696	0.66 0.8	3.2
7	28	16	23	80	9×14×12	3000	44.8 54.2	66.6 88.8	0.786 1.36	4.08 6.6	0.786 1.36	4.08 6.6	0.865 1.15	1.04 1.36	4.5
7.5	34	18	26	80	9×14×12	3000	62.3 72.9	96.6 127	1.38 2.34	6.76 10.9	1.38 2.34	6.76 10.9	1.53 2.01	1.8 2.34	6.2
8.9	45	20.5	32	105	14×20×17	3090	82.8 100	126 166	2.05 3.46	10.1 16.3	2.05 3.46	10.1 16.3	2.68 3.53	3.24 4.19	10.4
12.7	53	23.5	38	120	16×23×20	3060	128 161	197 259	3.96 6.68	19.3 31.1	3.96 6.68	19.3 31.1	4.9 6.44	5.05 6.57	14.5

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-12.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard and maximum lengths of the SHS model rail. If a rail length longer than the listed max length is required, rails may be jointed to meet the overall length. Contact THK for details.

For special rail lengths, it is recommended to use a value corresponding to the G dimension from the table. As the G dimension increases, this portion becomes less stable and the accuracy performance is severely impacted.

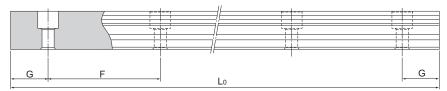
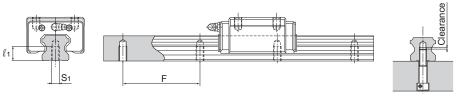


Table1 Standard Length and Maximum Length of the LM Rail for Model SHS


Unit: mm

Model No.	SHS 15	SHS 20	SHS 25	SHS 30	SHS 35	SHS 45	SHS 55	SHS 65
LM rail standard length (L₀)	160 220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600 1720 1840 1960 2080 2200	220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1240 1300 1420 1480 1540 1600 1720 180 2080 2200 2320 2440	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620
Standard pitch F	60	60	60	80	80	105	120	150
G	20	20	20	20	20	22.5	30	35
Max length	2500	3000	3000	3000	3000	3090	3060	3000

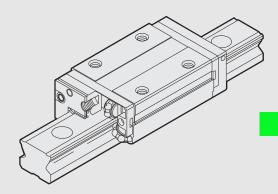
Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

SHS model rails also include a type where the LM rail is tapped from the bottom. This type is useful when mounting from the bottom of the base and when increased contamination protection is desired.

- (1) Determine the bolt length so that a clearance of 2 to 5 mm is secured between the bolt end and the bottom of the tap (effective tap depth). (See figure above.)
- (2) For standard pitches of the taps, see Table1 on 191-12.

Table2 Dimensions of the LM Rail Tap


Unit: mm

Model No.	S ₁	Effective tap depth ℓ_1
SHS 15	M5	8
SHS 20	M6	10
SHS 25	M6	12
SHS 30	M8	15
SHS 35	M8	17
SHS 45	M12	24
SHS 55	M14	24
SHS 65	M20	30

Model number coding

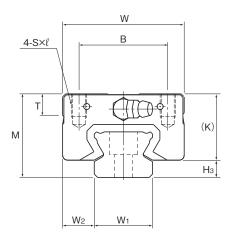
SHS35 LC2UU +1000LH K

Symbol for tapped-hole LM rail type

SSR

Caged Ball LM Guides

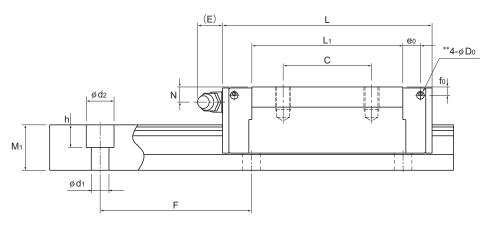
Product Specifications


Dimensional Drawing, Dimensional Table Models SSR-XW and SSR-XWM Models SSR-XV and SSR-XVM Model SSR-XTB	B 1-16 B 1-18 B 1-20
Standard Length and Maximum Length of the LM Rail	■ 1-22 ■ 1-23
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached Incremental Dimension with Grease Nipple	■ 1-236
(When LaCS is Attached) LM Block Dimension (Dimension L)	B 1-243
with LiCS Attached	■ 1-245
(When LiCS is Attached) Dedicated Bellows JSSR-X for Model SSR	B 1-246
	B 1-248
Cap C	B1-262
LM Block Dimension (Dimension L)	■ 1-263
with QZ Attached	■ 1-264

▲ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models SSR-XW and SSR-XWM



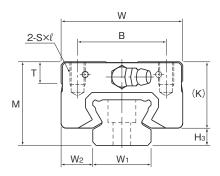
	dir	Oute nensi						LM b	lock o	dimen	sions					
Model No.	Height M	Width W	Length L	В	С	s×ℓ	L ₁	Т	К	Z	Е	fo	e ₀	Do	Grease nipple	H₃
SSR 15XW SSR 15XWM	24	34	56.9	26	26	M4×7	39.9	6.5	19.5	4.5	5.5	2.7	4.5	3	PB1021B	4.5
SSR 20XW SSR 20XWM	28	42	66.5	32	32	M5×8	46.6	8.2	22	5.5	12	2.9	5.2	3	B-M6F	6
SSR 25XW SSR 25XWM	33	48	83	35	35	M6×9	59.8	8.4	26.2	6	12	3.3	6.8	3	B-M6F	6.8
SSR 30XW SSR 30XWM	42	60	97	40	40	M8×12	70.7	11.3	32.5	8	12	4.5	7.6	4	B-M6F	9.5
SSR 35XW	48	70	110.9	50	50	M8×12	80.5	13	36.5	8.5	12	4.7	8.8	4	B-M6F	11.5

Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

Model number coding SSR25X +1200L Contamination Model Stainless LM rail length Symbol for Type of Stainless steel protection No. of rails used LM rail LM block steel (in mm) number accessory symbol (*1) on the same LM block plane (*4) Applied to only Symbol for LM rail No. of LM blocks 15 and 25 jointed use Radial clearance symbol (*2) used on the same Normal (No symbol) Accuracy symbol (*3) Light preload (C1) Normal grade (No Symbol) High accuracy grade (H)/Precision grade (P) Super precision grade (SP)/Ultra precision grade (UP) (*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-89. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Unit: mm


														-
		LM	rail dir	mensions			load ing			permis			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	N	14			∰ ∑ ™	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	12.5	60	4.5×7.5×5.3	2500 (1240)	14.7	16.5	0.0792	0.44	0.0486	0.274	0.0962	0.15	1.2
20	11	15.5	60	6×9.5×8.5	3000 (1480)	19.6	23.4	0.138	0.723	0.0847	0.448	0.18	0.25	2.1
23	12.5	18	60	7×11×9	3000 (2020)	31.5	36.4	0.258	1.42	0.158	0.884	0.33	0.4	2.7
28	16	23	80	7×11×9	3000 (2520)	46.5	52.7	0.446	2.4	0.274	1.49	0.571	0.8	4.3
34	18	27.5	80	9×14×12	3000	64.6	71.6	0.711	3.72	0.437	2.31	0.936	1.1	6.4

Note1) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes** for purposes other than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See ■1-22.) Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Note2) The LM rail mounting hole of SSR15X is drilled for M4 screws as standard (with Y indication). If you order the hole to be drilled for M3 screws (without Y indication), contact THK. When replacing this model with model SR, pay attention to the dimension of the rail mounting hole.

Models SSR-XV and SSR-XVM

		Outer						LM bl	ock di	mensi	ons				
Model No.	Height	Width	Length											Grease nipple	
	М	W	L	В	s×ℓ	L₁	Т	К	N	Е	f o	e ₀	D₀		Н₃
SSR 15XV SSR 15XVM	24	34	40.3	26	M4×7	23.3	6.5	19.5	4.5	5.5	2.7	4.5	3	PB1021B	4.5
SSR 20XV SSR 20XVM	28	42	47.7	32	M5×8	27.8	8.2	22	5.5	12	2.9	5.2	3	B-M6F	6
SSR 25XV SSR 25XVM	33	48	60	35	M6×9	36.8	8.4	26.2	6	12	3.3	6.8	3	B-M6F	6.8

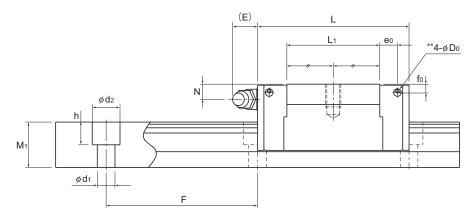
Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

Model number coding

rail

+1200L M Contamination LM rail length Symbol for Model Type of Stainless Stainless steel protection No. of rails used steel (in mm) LM block number LM rail accessory symbol (*1) on the same LM block Applied to only Symbol for LM rail plane (*4) No. of LM blocks 15 and 25 jointed use Radial clearance symbol (*2) Normal (No symbol) used on the same Accuracy symbol (*3)

Light preload (C1)


Super precision grade (SP)/Ultra precision grade (UP)

(*1) See contamination protection accessory on 🖾 1-352. (*2) See 🖾 1-89. (*3) See 🖾 1-95. (*4) See 🖾 1-35.

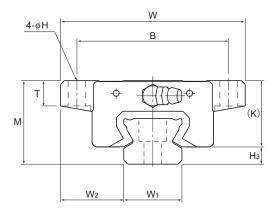
Normal grade (No Symbol)

High accuracy grade (H)/Precision grade (P)

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 3 rails are used in parallel is 3 at a minimum.)

Unit: mm

		LM	rail dir	nensions		Basic rat				perminent kN			Ма	ss
Width		Height	Pitch		Length*	С	C₀	N	14		1 ₈	J %	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	12.5	60	4.5×7.5×5.3	2500 (1240)	9.1	9.7	0.0303	0.192	0.0189	0.122	0.0562	80.0	1.2
20	11	15.5	60	6×9.5×8.5	3000 (1480)	13.4	14.4	0.0523	0.336	0.0326	0.213	0.111	0.14	2.1
23	12.5	18	60	7×11×9	3000 (2020)	21.7	22.5	0.104	0.661	0.0652	0.419	0.204	0.23	2.7

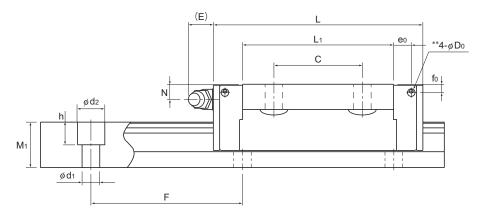

Note1) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes** for purposes other than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-22.) Static permissible moment: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other Note2) The LM rail mounting hole of SSR15X is drilled for M4 screws as standard (with Y indication). If you order the hole to be drilled for M3 screws (without Y indication), contact THK. When replacing this model with model SR, pay attention to the dimension of the rail mounting hole.

Model SSR-XTB



		Outer nension						Lľ	M bloc	k dim	ensio	ns				
Model No.	Height M	Width	Length L	В	С	н	Lı	Т	К	N	Е	fo	e _o	D₀	Grease nipple	H₃
SSR 15XTB	24	52	56.9	41	26	4.5	39.9	7	19.5	4.5	5.5	2.7	4.5	3	PB1021B	4.5
SSR 20XTB	28	59	66.5	49	32	5.5	46.6	9	22	5.5	12	2.9	5.2	3	B-M6F	6
SSR 25XTB	33	73	83	60	35	7	59.8	10	26.2	6	12	3.3	6.8	3	B-M6F	6.8

Model number coding SSR15X UU C1 ΤВ +820L Contamination LM rail length Model Type of Symbol for protection Symbol for number LM block (in mm) LM rail accessory symbol (*1) jointed use No. of rails used Applied to only on the same plane (*4) 15 and 25 sizes No. of LM blocks Radial clearance symbol (*2) Normal (No symbol) used on the same Accuracy symbol (*3) Normal grade (No Sýmbol) Light preload (C1) High accuracy grade (H) Precision grade (P) Super precision grade (SP) Ultra precision grade (UP) Medium preload (C0)

(*1) See contamination protection accessory on \$\textstyle{\textstyle{1}}\)1-352. (*2) See \$\textstyle{\textstyle{1}}\)1-89. (*3) See \$\textstyle{\textstyle{1}}\)1-95. (*4) See \$\textstyle{\textstyle{1}}\)1-352.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Unit: mm

		LM	rail dir	mensions		Basic rat	load ing			perminent kN			Ма	ISS
Width		Height	Pitch		Length*	С	C₀	2	•			₩ Ç	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks		Double blocks	1 block	kg	kg/m
15	18.5	12.5	60	4.5×7.5×5.3	2500 (1240)	14.7	16.5	0.0792	0.44	0.0486	0.274	0.0962	0.19	1.2
20	19.5	15.5	60	6×9.5×8.5	3000 (1480)	19.6	23.4	0.138	0.723	0.0847	0.448	0.18	0.31	2.1
23	25	18	60	7×11×9	3000 (2020)	31.5	36.4	0.258	1.42	0.158	0.884	0.33	0.53	2.7

Note1) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes** for purposes other than mounting a grease nipple.

than mounting a grease hippie.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-22.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

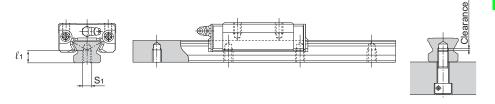
Note2) The LM rail mounting hole of SSR15X is drilled for M4 screws as standard (with Y indication). If you order the hole to be drilled for M3 screws (without Y indication), contact THK. When replacing this model with model SR, pay attention to the dimension of the rail mounting hole.

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SSR variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

Table1 Standard Length and Maximum Length of the LM Rail

Unit: mm


Model No.	SSR 15X	SSR 20X	SSR 25X	SSR 30X	SSR 35X
	160	220	220	280	280
	220	280	280	360	360
	280	340	340	440	440
	340	400	400	520	520
	400	460	460	600	600
	460	520	520	680	680
	520	580	580	760	760
	580	640	640	840	840
	640	700	700	920	920
	700	760	760	1000	1000
	760	820	820	1080	1080
	820	940	940	1160	1160
	940	1000	1000	1240	1240
	1000	1060	1060	1320	1320
	1060	1120	1120	1400	1400
	1120	1180	1240	1480	1480
	1180	1240	1300	1640	1640
LM rail standard	1240	1300	1360	1720	1720
length (L ₀)	1300	1360	1420	1800	1800
iongai (Lo)	1360	1420	1480	1880	1880
	1420	1480	1540	1960	1960
	1480	1540	1600	2040	2040
	1540	1600	1660	2120	2120
		1660	1720	2200	2200
		1720	1780	2280	2280
		1780	1840	2360	2360
		1840	1900	2440	2440
		1900	1960	2520	2520
		1960	2020	2600	2600
		2020	2080	2680	2680
		2080	2140	2760	2760
		2140	2200	2840	2840
			2260	2920	2920
			2320		
			2380		
			2440		
Standard pitch F	60	60	60	80	80
G	20	20	20	20	20
Max length	2500 (1240)	3000 (1480)	3000 (2020)	3000 (2520)	3000

Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

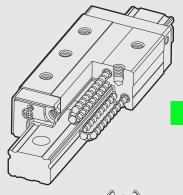
Note3) The values in the parentheses indicate the maximum lengths of stainless steel types.

SSR model rails also include a type where the LM rail is tapped from the bottom. This type is useful when mounting from the bottom of the base and when increased contamination protection is desired.

- (1) A tapped-hole LM rail type is available only for high accuracy or lower grades.
- (2) Determine the bolt length so that a clearance of 2 to 5 mm is secured between the bolt end and the bottom of the tap (effective tap depth). (See figure above.)
- (3) For standard pitches of the taps, see Table1 on 51-22.

Table2 Dimensions of the LM Rail Tap

Unit: mm


Model No.	S ₁	Effective tap depth ℓ_1	
SSR 15X	M5	7	
SSR 20X	M6	9	
SSR 25X	M6	10	
SSR 30X	M8	14	
SSR 35X	M8	16	

Model number coding

SSR20X W2UU +1200LH

Symbol for

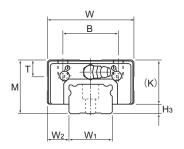
tapped-hole LM rail type

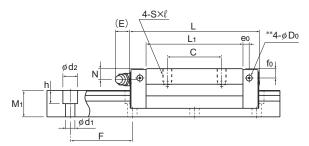
SNR/SNS

Caged

Caged Ball LM Guides

Product Specifications


Dimensional Drawing, Dimensional Table	
Models SNR-R and SNR-LR	B 1-26
Models SNS-R and SNS-LR	B 1-28
Models SNR-C and SNR-LC	B 1-30
Models SNS-C and SNS-LC	B 1-32
Models SNR-RH (Build to Order)	
and SNR-LRH (Build to Order)	B 1-34
Models SNS-RH (Build to Order)	
and SNS-LRH (Build to Order)	B 1-36
Models SNR-CH (Build to Order)	
and SNR-LCH (Build to Order)	■ 1-38
Models SNS-CH (Build to Order)	
and SNS-LCH (Build to Order)	B 1-40
Standard Length and Maximum Length	
of the LM Rail	■ 1-42
Options	■ 1-235
The LM Block Dimension (Dimension L)	
with LaCS and Seals Attached	B 1-236
Incremental Dimension with Grease Nipple	
(When LaCS is Attached)	B 1-243
Dedicated Bellows JSN	
for Models SNR and SNS	B 1-249
Cap C	■ 1-262
Cap GC	■ 1-263
LM Block Dimension (Dimension L)	
with QZ Attached	B 1-264


□ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models SNR-R and SNR-LR

Model SNR-R

	dir	Oute nensi						LM b	lock d	imens	sions					
Model No.	Height M	Width W	Length L	В	С	s×ℓ	L ₁	Т	К	Ν	fo	E	e _o	D ₀	Grease nipple	Н₃
SNR 25R SNR 25LR	31	50	82.8 102	32	35 50	M6×8	62.4 81.6	9.7	25.5	7	6	12	4	3.9	B-M6F	5.5
SNR 30R SNR 30LR	38	60	98 120.5	40	40 60	M8×10	72.1 94.6	9.7	31	7	7	12	6.5	3.9	B-M6F	7
SNR 35R SNR 35LR	44	70	109.5 135	50	50 72	M8×12	79 104.5	11.7	35	8	8	12	6	5.2	B-M6F	9
SNR 45R SNR 45LR	52	86	138.2 171	60	60 80	M10×17	105 137.8	14.7	40.4	10	8	16	8.5	5.2	B-PT1/8	11.6
SNR 55R SNR 55LR	63	100	163.3 200.5		75 95	M12×18	123.6 160.8	17.7	49	11	10	16	10	5.2	B-PT1/8	14
SNR 65R SNR 65LR	75	126	186 246	76	70 110	M16×20	143.6 203.6		60	16	15	16	8.7	8.2	B-PT1/8	15
SNR 85LR	90	156	302.8	100	140	M18×25	251	27.3	73	20	20	16	10	8.2	B-PT1/8	17

Model number coding

SNR45 LR 2 QZ KKHH C0 +1200L P T Z - ${
m II}$

Model Type of number LM block

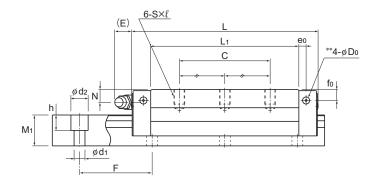
With QZ Lubricator Contamination protection accessory symbol (*1)

LM rail length (in mm) Symbol for LM rail jointed use With plate cover

Symbol for No. of rails used on the same plane (*5)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol)


Normal (No symbol) Light preload (C1) Medium preload (C0) or steel tape (*4) Accuracy symbol (*3)

Normal grade (No Sýmbol) High accuracy grade (H)/Precision grade (P) Super precision grade (SP)/Ultra precision grade (UP)

(*1) See contamination protection accessory on 🖪 1-352 (*2) See 🖪 1-89. (*3) See 🖪 1-95. (*4) Specify the plate cover or the steel tape. (*5) See 🖪 1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

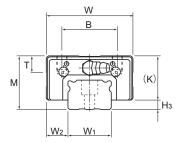
Those models equipped with QZ Lubricator cannot have a grease nipple.

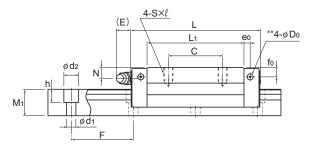
Model SNR-LR

Unit: mm

		LM	rail din	nensions		Basic rat				permi			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	2 \	 ✓ ▼	2	█<	ı Karı	LM block	LM rail
W ₁ 0 -0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
25	12.5	17	40	6×9.5×8.5	2500	48 57	79 101	0.682 1.14		0.427 0.708	2.25 3.4	0.868 1.1	0.4 0.6	3.1
28	16	21	80	7×11×9	3000	68 81	106 138	1.04 1.81	5.7 8.89	0.653 1.12	3.56 5.47	1.3 1.69	0.7 0.9	4.4
34	18	24.5	80	9×14×12	3000	90 108	144 188	1.61 2.68	8.64 13.6	1.01 1.67	5.39 8.49	2.13 2.79	1 1.4	6.2
45	20.5	29	105	14×20×17	3090	132 161	216 288	3.29 5.4	16 26.2	2.03 3.35	9.86 16.2	4.21 5.64	1.9 2.4	9.8
53	23.5	36.5	120	16×23×20	3060	177 214	292 383	4.99 8.41	25.7 40.9	3.11 5.22	16 25.3	6.69 8.78	3.1 4	14.5
63	31.5	43	150	18×26×22	3000	260 340	409 572	8.05 15.9	41.2 74.5	5.03 9.84	25.6 45.7	11 15.4	5.6 8	20.5
85	35.5	48	180	24×35×28	3000	550	887	30.3	142	18.7	87.6	31.9	14.8	29.5

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other


THK will mount grease ripples per your request. Therefore, do not use the state line is the mounting a grease nipple.


The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-42.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SNS-R and SNS-LR

Model SNS-R

		<u> </u>														
	dir	Oute nensi						LM b	lock d	imen	sions					
Model No.	Height M	Width	Length L	В	С	s×l	L ₁	Т	К	Ν	fo	E	e _o	Do	Grease nipple	Н₃
SNS 25R SNS 25LR	31	50	82.8 102	32	35 50	M6×8	62.4 81.6	9.7	25.5	7	6	12	4	3.9	B-M6F	5.5
SNS 30R SNS 30LR	38	60	98 120.5	40	40 60	M8×10	72.1 94.6	9.7	31	7	7	12	6.5	3.9	B-M6F	7
SNS 35R SNS 35LR	44	70	109.5 135	50	50 72	M8×12	79 104.5	11.7	35	8	8	12	6	5.2	B-M6F	9
SNS 45R SNS 45LR	52	86	138.2 171	60	60 80	M10×17	105 137.8	14.7	40.4	10	8	16	8.5	5.2	B-PT1/8	11.6
SNS 55R SNS 55LR	63	100	163.3 200.5	65	75 95	M12×18	123.6 160.8	17.7	49	11	10	16	10	5.2	B-PT1/8	14
SNS 65R SNS 65LR	75	126	186 246	76	70 110	M16×20	143.6 203.6		60	16	15	16	8.7	8.2	B-PT1/8	15
SNS 85LR	90	156	302.8	100	140	M18×25	251	27.3	73	20	20	16	10	8.2	B-PT1/8	17

Model number coding

SNS45 LR 2 QZ KKHH C0 +1200L P T Z - ${
m I\hspace{-.1em}I}$

Model Type of number LM block

With QZ Lubricator Contamination protection accessory symbol (*1)

LM rail length (in mm) Symbol for LM rail jointed use With plate cover

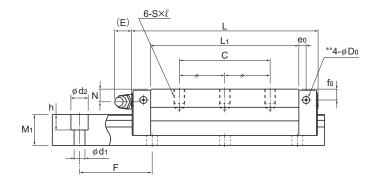
Symbol for No. of rails used on the same plane (*5)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)

Medium preload (C0)

or steel tape (*4)


Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352 (*2) See ▲1-89. (*3) See ▲1-95. (*4) Specify the plate cover or the steel tape. (*5) See ▲1-35.

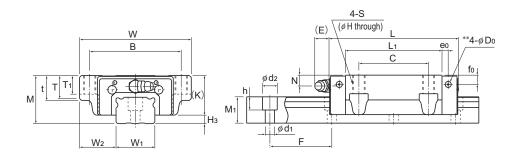
Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Model SNS-LR

Unit: mm

		LM	rail din	nensions		Basic rati				permi			Ма	ISS
Width		Height	Pitch		Length*	С	Co	2 \	14	2		M _°	LM block	LM rail
W ₁ 0 -0.05	W ₂	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
25	12.5	17	40	6×9.5×8.5	2500	37 44	61 78	0.544 0.915		0.504 0.847		0.648 0.826	0.4 0.6	3.1
28	16	21	80	7×11×9	3000	52 62	81 106	0.821 1.43	4.5 7.04	0.761 1.33	4.17 6.53	0.962 1.25	0.7 0.9	4.4
34	18	24.5	80	9×14×12	3000	69 83	110 144	1.27 2.11	6.81 10.7	1.17 1.96	6.32 10	1.56 2.05	1 1.4	6.2
45	20.5	29	105	14×20×17	3090	101 123	167 222	2.63 4.29	12.7 20.8	2.43 3.97	11.8 19.3	3.15 4.21	1.9 2.4	9.8
53	23.5	36.5	120	16×23×20	3060	136 164	225 295	3.96 6.66	20.4 32.4	3.67 6.17	19 30	4.97 6.52	3.1 4	14.5
63	31.5	43	150	18×26×22	3000	199 261	315 441	6.4 12.7	32.7 59.1	5.93 11.7	30.3 54.8	8.24 11.5	5.6 8	20.5
 85	35.5	48	180	24×35×28	3000	422	679	23.9	112	22.1	104	23.7	14.8	29.5


Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other HK will mount greate inpries per your request. Historical, to his task the standard maximum length of an LM rail. (See ■1-42.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SNR-C and SNR-LC

Model SNR-C

		Oute nensi							I	_M bl	ock	dime	nsior	ns					
Model No.	Height M	Width W	Length	В	С	S	н	L ₁	t	Т	T ₁	К	N	fo	E	e₀	Do	Grease nipple	Н₃
SNR 25C SNR 25LC	31	72	82.8 102	59	45	M8		62.4 81.6	16	14.8	12	25.5	7	6	12	4	3.9	B-M6F	5.5
SNR 30C SNR 30LC	38	90	98 120.5	72	52	M10	8.5	72.1 94.6	18	16.8	14	31	7	7	12	6.5	3.9	B-M6F	7
SNR 35C SNR 35LC	44	100	109.5 135	82	62	M10	8.5	79 104.5	20	18.8	16	35	8	8	12	6	5.2	B-M6F	9
SNR 45C SNR 45LC	52	120	138.2 171	100	80	M12	10.5	105 137.8	22	20.5	20	40.4	10	8	16	8.5	5.2	B-PT1/8	11.6
SNR 55C SNR 55LC	63	140	163.3 200.5		95	M14	12.5	123.6 160.8	24	22.5	22	49	11	10	16	10	5.2	B-PT1/8	14
SNR 65C SNR 65LC	75	170	186 246	142	110	M16	14.5	143.6 203.6	28	26	25	60	16	15	16	8.7	8.2	B-PT1/8	15
SNR 85LC	90	215	302.8	185	140	M20	17.6	251	34	32	28	73	20	20	16	10	8.2	B-PT1/8	17

Model number coding

SNR45 LC 2 QZ KKHH C0 +1200L P T Z - ${ m II}$

Model Type of number LM block

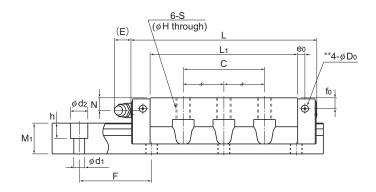
With QZ Lubricator Contamination protection accessory symbol (*1)

LM rail length (in mm) Symbol for LM rail jointed use With plate cover Symbol for No. of rails used on the same plane (*5)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)

Medium preload (C0)


(*2) or steel tape (*4) Accuracy symbol (*3)

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on △1-352 (*2) See △1-89. (*3) See △1-95. (*4) Specify the plate cover or the steel tape. (*5) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

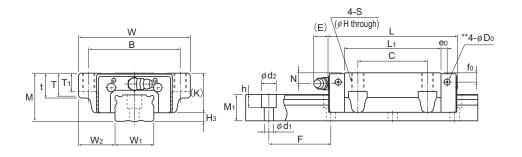
Those models equipped with QZ Lubricator cannot have a grease nipple.

Model SNR-LC

Unit: mm

		LM	rail din	nensions		Basic rati				permi			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	Λ (14	2	ls ,	M _°	LM block	LM rail
W ₁ 0 -0.05	W ₂	M ₁	F	$d_1 \! \times \! d_2 \! \times \! h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
25	23.5	17	40	6×9.5×8.5	2500	48 57	79 101	0.682 1.14		0.427 0.708	-	0.868 1.1	0.6 0.8	3.1
28	31	21	80	7×11×9	3000	68 81	106 138	1.04 1.81	5.7 8.89	0.653 1.12	3.56 5.47	1.3 1.69	1 1.3	4.4
34	33	24.5	80	9×14×12	3000	90 108	144 188	1.61 2.68	8.64 13.6	1.01 1.67	5.39 8.49	2.13 2.79	1.5 2	6.2
45	37.5	29	105	14×20×17	3090	132 161	216 288	3.29 5.4	16 26.2	2.03 3.35	9.86 16.2	4.21 5.64	2.3 3.4	9.8
53	43.5	36.5	120	16×23×20	3060	177 214	292 383	4.99 8.41	25.7 40.9	3.11 5.22	16 25.3	6.69 8.78	3.6 5.5	14.5
63	53.5	43	150	18×26×22	3000	260 340	409 572	8.05 15.9	41.2 74.5	5.03 9.84	25.6 45.7	11 15.4	7.4 10.5	20.5
85	65	48	180	24×35×28	3000	550	887	30.3	142	18.7	87.6	31.9	20.0	29.5

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.


THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-42.)

Static permissible moment*: 1 block: static permissible moment value with 2 blocks closely contacting a

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SNS-C and SNS-LC

Model SNS-C

		Oute nensi							l	_M bl	ock (dime	nsior	ns					
Model No.	Height M	Width	Length	В	С	S	Н	L ₁	t	Т	T 1	К	N	fo	Е	e₀	D₀	Grease nipple	H₃
SNS 25C SNS 25LC	31	72	82.8 102	59	45	M8		62.4 81.6	16	14.8	12	25.5	7	6	12	4	3.9	B-M6F	5.5
SNS 30C SNS 30LC	38	90	98 120.5	72	52	M10		72.1 94.6	18	16.8	14	31	7	7	12	6.5	3.9	B-M6F	7
SNS 35C SNS 35LC	44	100	109.5 135	82	62	M10	8.5	79 104.5	20	18.8	16	35	8	8	12	6	5.2	B-M6F	9
SNS 45C SNS 45LC	52	120	138.2 171	100	80	M12	10.5	105 137.8	22	20.5	20	40.4	10	8	16	8.5	5.2	B-PT1/8	11.6
SNS 55C SNS 55LC	63	140	163.3 200.5		95	M14	12.5	123.6 160.8	24	22.5	22	49	11	10	16	10	5.2	B-PT1/8	14
SNS 65C SNS 65LC	75	170	186 246	142	110	M16	14.5	143.6 203.6	28	26	25	60	16	15	16	8.7	8.2	B-PT1/8	15
SNS 85LC	90	215	302.8	185	140	M20	17.6	251	34	32	28	73	20	20	16	10	8.2	B-PT1/8	17

Model number coding

SNS45 LC 2 QZ KKHH C0 +1200L P T Z - ${
m I\hspace{-.1em}I}$

Model Type of number LM block With QZ Lubricator

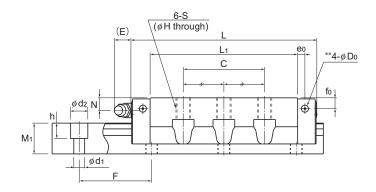
Contamination protection accessory symbol (*1)

LM rail length (in mm) Symbol for LM rail jointed use With plate cover Symbol for No. of rails used on the same plane (*5)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Acc Light preload (C1) Nor

Medium preload (C0)


*2) or steel tape (*4)
Accuracy symbol (*3)

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352 (*2) See ▲1-89. (*3) See ▲1-95. (*4) Specify the plate cover or the steel tape. (*5) See ▲1-35.

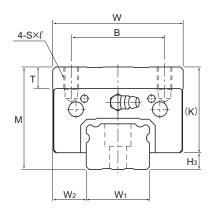
Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Model SNS-LC

Unit: mm

		LM	rail din	nensions		Basic rati				permi			Ма	ISS
Width		Height	Pitch		Length*	С	Co	Λ (I _A	2	ls ,	M _°	LM block	LM rail
W ₁ 0 -0.05	W ₂	M ₁	F	$d_1 \! \times \! d_2 \! \times \! h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
25	23.5	17	40	6×9.5×8.5	2500	37 44	61 78	0.544 0.915		0.504 0.847		0.648 0.826	0.6 0.8	3.1
28	31	21	80	7×11×9	3000	52 62	81 106	0.821 1.43	4.5 7.04	0.761 1.33	4.17 6.53	0.962 1.25	1 1.3	4.4
34	33	24.5	80	9×14×12	3000	69 83	110 144	1.27 2.11	6.81 10.7	1.17 1.96	6.32 10	1.56 2.05	1.5 2	6.2
45	37.5	29	105	14×20×17	3090	101 123	167 222	2.63 4.29	12.7 20.8	2.43 3.97	11.8 19.3	3.15 4.21	2.3 3.4	9.8
53	43.5	36.5	120	16×23×20	3060	136 164	225 295	3.96 6.66	20.4 32.4	3.67 6.17	19 30	4.97 6.52	3.6 5.5	14.5
63	53.5	43	150	18×26×22	3000	199 261	315 441	6.4 12.7	32.7 59.1	5.93 11.7	30.3 54.8	8.24 11.5	7.4 10.5	20.5
85	65	48	180	24×35×28	3000	422	679	23.9	112	22.1	104	23.7	20.0	29.5


Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-42.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block.

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SNR-RH (Build to Order) and SNR-LRH (Build to Order)

	dir	Oute nensi						LM b	lock d	imens	sions					
Model No.	Height M	Width	Length L	В	С	s×ℓ	L ₁	Т	К	Ν	fo	Е	e _o	Do	Grease nipple	H₃
SNR 35RH SNR 35LRH	55	70	109.5 135	50	50 72	M8×12	79 104.5	11.7	46	19	19	12	6	5.2	B-M6F	9
SNR 45RH SNR 45LRH	70	86	138.2 171	60	60 80	M10×17	105 137.8	14.7	58.4	28	26	16	8.5	5.2	B-PT1/8	11.6
SNR 55RH SNR 55LRH	80	100	163.3 200.5		75 95	M12×18	123.6 160.8		66	28	27	16	10	5.2	B-PT1/8	14

Model number coding

C₀ RH +920L

Model Type of number LM block

With QZ

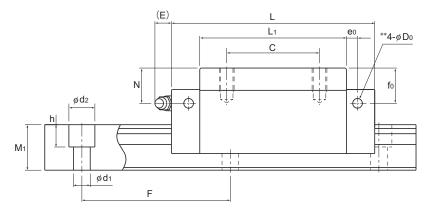
Contamination Lubricator protection accessory symbol (*1)

LM rail length (in mm)

Symbol for LM rail jointed use or steel tape (*4)

Symbol for No. of rails used on the same With plate cover plane (*5)

No. of LM blocks used on the same rail


Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)

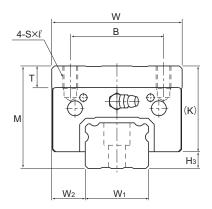
Accuracy symbol (*3) Medium preload (C0)

Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on △1-352 (*2) See △1-89. (*3) See △1-95. (*4) Specify the plate cover or the steel tape. (*5) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

		LM	rail dir	nensions			load ing			perminent kN			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀		1 _A	2		(1) §	LM block	LM rail
W ₁ 0 -0.05	W ₂	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
34	18	24.5	80	9×14×12	3000	90 108	144 188	1.61 2.68	8.64 13.6	1.01 1.67	5.39 8.49	2.13 2.79	1.5 2	6.2
45	20.5	29	105	14×20×17	3090	132 161	216 288	3.29 5.4	16 26.2	2.03 3.35	9.86 16.2	4.21 5.64	3.2 4.1	9.8
53	23.5	36.5	120	16×23×20	3060	177 214	292 383	4.99 8.41	25.7 40.9	3.11 5.22	16 25.3	6.69 8.78	4.7 6.2	14.5


Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple. The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-42.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SNS-RH (Build to Order) and SNS-LRH (Build to Order)

	dir	Oute nensi						LM b	lock d	imen	sions					
Model No.	Height M	Width	Length L	В	С	s×ℓ	Lı	Т	К	Ν	fo	Е	e _o	Do	Grease nipple	H₃
SNS 35RH SNS 35LRH	55	70	109.5 135	50	50 72	M8×12	79 104.5	11.7	46	19	19	12	6	5.2	B-M6F	9
SNS 45RH SNS 45LRH	70	86	138.2 171	60	60 80	M10×17	105 137.8	14.7	58.4	28	26	16	8.5	5.2	B-PT1/8	11.6
SNS 55RH SNS 55LRH	80	100	163.3 200.5		75 95	M12×18	123.6 160.8		66	28	27	16	10	5.2	B-PT1/8	14

Model number coding

SNS35 RH 2 QZ KKHH C0 +920L H T Z - ${ m II}$

Model Type of number LM block

With QZ Lubricator

Contamination protection accessory symbol (*1)

LM rail length (in mm)

Symbol for LM rail jointed use With plate cover or steel tape (*4) Symbol for No. of rails used on the same plane (*5)

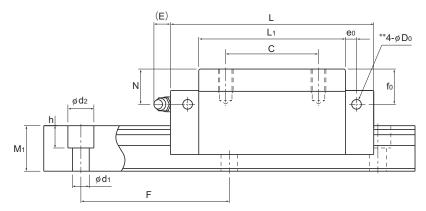
No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Acc

Light preload (C1)
Medium preload (C0)

Normal grade (No Symbol)

Accuracy symbol (*3)


Normal grade (No Symbol)

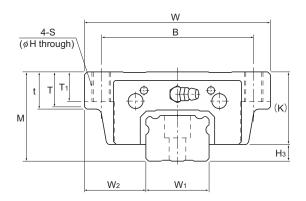
Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on △1-352 (*2) See △1-89. (*3) See △1-95. (*4) Specify the plate cover or the steel tape. (*5) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

		LM	rail dir	nensions		Basic rat	load ing			permi: nent kN			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀		1 _A	2		(1) §	LM block	LM rail
W ₁ 0 -0.05	W ₂	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
34	18	24.5	80	9×14×12	3000	69 83	110 144	1.27 2.11	6.81 10.7	1.17 1.96	6.32 10	1.56 2.05	1.5 2	6.2
45	20.5	29	105	14×20×17	3090	101 123	167 222	2.63 4.29	12.7 20.8	2.43 3.97	11.8 19.3	3.15 4.21	3.2 4.1	9.8
53	23.5	36.5	120	16×23×20	3060	136 164	225 295	3.96 6.66	20.4 32.4	3.67 6.17	19 30	4.97 6.52	4.7 6.2	14.5


Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

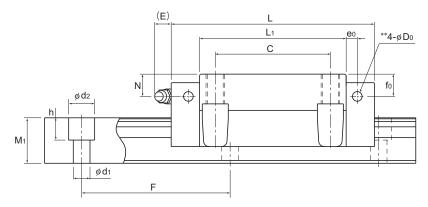
THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple. The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-42.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SNR-CH (Build to Order) and SNR-LCH (Build to Order)

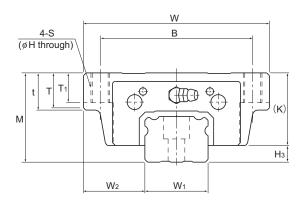
		Oute nensi							I	_M bl	ock	dime	nsior	าร					
Model No.	Height M	Width	Length	В	С	S	Н	Lı	t	Т	T ₁	К	N	fo	Е	e₀	Do	Grease nipple	Н₃
SNR 35CH SNR 35LCH	48	100	109.5 135	82	62	M10	8.5	79 104.5	20	18.8	16	39	12	12	12	6	5.2	B-M6F	9
SNR 45CH SNR 45LCH	60	120	138.2 171	100	80	M12	10.5	105 137.8	22	20.5	20	48.4	18	16	16	8.5	5.2	B-PT1/8	11.6
SNR 55CH SNR 55LCH	70	140	163.3 200.5	116	95	M14	12.5	123.6 160.8	24	22.5	22	56	18	17	16	10	5.2	B-PT1/8	14


Model number coding SNR45 LCH KK C0 +1000L Symbol for Symbol for Contamination Model Type of With QZ LM rail length LM rail Lubricator protection No. of rails used (in mm) LM block number iointed use accessory symbol (*1) on the same plane (*5) With plate cover No. of LM blocks or steel tape (*4) Radial clearance symbol (*2) used on the same Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Normal (No symbol)

Light preload (C1) Medium preload (C0)

(*1) See contamination protection accessory on A1-352 (*2) See A1-89. (*3) See A1-95. (*4) Specify the plate cover or the steel tape. (*5) See A1-35.

Ultra precision grade (UP)


Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

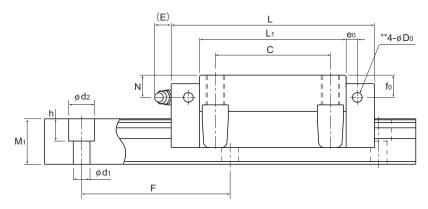
		LM	rail dir	nensions		Basic rat	load ing			permi			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	× (₹	2		ğ) ¤	LM block	LM rail
W ₁ 0 -0.05	W ₂	M₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks		Double blocks		kg	kg/m
34	33	24.5	80	9×14×12	3000	90 108	144 188	1.61 2.68	8.64 13.6	1.01 1.67	5.39 8.49	2.13 2.79	1.7 2.2	6.2
45	37.5	29	105	14×20×17	3090	132 161	216 288	3.29 5.4	16 26.2	2.03 3.35	9.86 16.2	4.21 5.64	3 4.2	9.8
53	43.5	36.5	120	16×23×20	3060	177 214	292 383	4.99 8.41	25.7 40.9	3.11 5.22	16 25.3	6.69 8.78	4.4 6.5	14.5

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other THK will mount grease inplies per your squase.....
than mounting a grease nipple.
The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-42.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SNS-CH (Build to Order) and SNS-LCH (Build to Order)

		Oute nensi							l	_M bl	ock (dime	nsior	ns					
Model No.	Height M	Width	Length	В	С	S	Н	L ₁	t	Т	T ₁	К	N	fo	Е	e ₀	Do	Grease nipple	Н₃
SNS 35CH SNS 35LCH	48	100	109.5 135	82	62	M10	8.5	79 104.5	20	18.8	16	39	12	12	12	6	5.2	B-M6F	9
SNS 45CH SNS 45LCH	60	120	138.2 1 71	100	80	M12	10.5	105 137.8	22	20.5	20	48.4	18	16	16	8.5	5.2	B-PT1/8	11.6
SNS 55CH SNS 55LCH	70	140	163.3 200.5	116	95	M14	12.5	123.6 160.8	24	22.5	22	56	18	17	16	10	5.2	B-PT1/8	14

Model number coding C₀ +1000L SNS45 Contamination Model Type of With QZ LM rail length Symbol for Symbol for Lubricator protection LM rail No. of rails used LM block (in mm) number accessory jointed use on the same symbol (*1) plane (*5) With plate cover No. of LM blocks or steel tape (*4) Radial clearance symbol (*2) used on the same Normal (No symbol) Accuracy symbol (*3) rail Light preload (C1) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP)


Medium preload (C0)

(*1) See contamination protection accessory on \$\textbf{A}1-352 (*2)\$ See \$\textbf{A}1-89. (*3)\$ See \$\textbf{A}1-95. (*4) Specify the plate cover or the steel tape. (*5) See A1-35.

Ultra precision grade (UP)

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

		LM	rail dir	nensions		Basic rat	load ing			perminent kN			Ма	SS
Width		Height	Pitch		Length *	С	C ₀		1 _A	2		(1) §	LM block	LM rail
W ₁ 0 -0.05	W ₂	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
34	33	24.5	80	9×14×12	3000	69 83	110 144	1.27 2.11	6.81 10.7	1.17 1.96	6.32 10	1.56 2.05	1.7 2.2	6.2
45	37.5	29	105	14×20×17	3090	101 123	167 222	2.63 4.29	12.7 20.8	2.43 3.97	11.8 19.3	3.15 4.21	3 4.2	9.8
53	43.5	36.5	120	16×23×20	3060	136 164	225 295	3.96 6.66	20.4 32.4	3.67 6.17	19 30	4.97 6.52	4.4 6.5	14.5

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple. The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-42.)

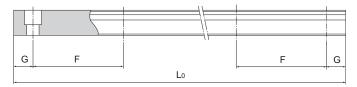
Static permissible moment*: 1 block: static permissible moment value with 1 LM block

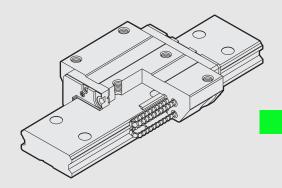
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SNR/SNS variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.




Table1 Standard Length and Maximum Length of the LM Rail for Models SNR/SNS

Unit: mm

Model No.	SNR/SNS 25	SNR/SNS 30	SNR/SNS 35	SNR/SNS 45	SNR/SNS 55	SNR/SNS 65	SNR/SNS 85
	230	280	280	570	780	1270	1530
	270	360	360	675	900	1570	1890
	350	440	440	780	1020	2020	2250
	390	520	520	885	1140	2620	2610
	470	600	600	990	1260		
	510	680	680	1095	1380		
	590	760	760	1200	1500		
	630	840	840	1305	1620		
	710	920	920	1410	1740		
	750	1000	1000	1515	1860		
	830	1080	1080	1620	1980		
	950	1160	1160	1725	2100		
	990	1240	1240	1830	2220		
	1070	1320	1320	1935	2340		
	1110	1400	1400	2040	2460		
LM rail standard	1190	1480	1480	2145	2580		
length (L₀)	1230	1560	1560	2250	2700		
	1310	1640	1640	2355	2820		
	1350	1720	1720	2460	2940		
	1430	1800	1800	2565	3060		
	1470	1880	1880	2670			
	1550	1960	1960	2775			
	1590	2040	2040	2880			
	1710	2200	2200	2985			
	1830	2360	2360	3090			
	1950	2520	2520				
	2070	2680	2680				
	2190	2840	2840				
	2310	3000	3000				
	2430						
	2470						
Standard pitch F	40	80	80	105	120	150	180
G	15	20	20	22.5	30	35	45
Max length	2500	3000	3000	3090	3060	3000	3000

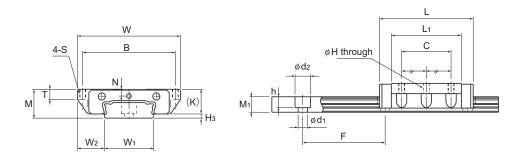
Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

SHW

Caged Ball LM Guides

Product Specifications


Dimensional Drawing, Dimensional Table Model SHW-CA Models SHW-CR and SHW-HR	B 1-44 B 1-46
Standard Length and Maximum Length of the LM Rail	■ 1-48
OptionsThe LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	■ 1-237
(When LaCS is Attached)	B1-244
Dedicated Bellows JSHW for Model SHW	B 1-250
Cap C	B 1-262
Cap GC	B 1-263
LM Block Dimension (Dimension L)	
with QZ Attached	B 1-264
Gease Nipple and Greasing Hole Model SHW	B 1-269

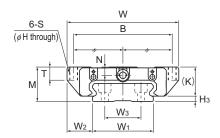
□ Technical Descriptions of the Products (Separate)

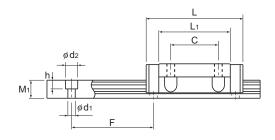
^{*} Please see the separate "A Technical Descriptions of the Products".

Model SHW-CA

Models SHW12CAM and SHW14CAM

	Oute	r dimen	sions			LN	/I block o	dimensio	ns			
Model No.	Height	Width	Length									
	М	W	L	В	С	s	Н	L ₁	Т	К	N	Н₃
SHW 12CAM	12	40	37	35	18	МЗ	2.5	27	4	10	2.8	2
SHW 14CAM	14	50	45.5	45	24	МЗ	2.5	34	5	12	3.3	2
SHW 17CAM	17	60	51	53	26	M4	3.3	38	6	14.5	4	2.5
SHW 21CA	21	68	59	60	29	M5	4.4	43.6	8	17.7	5	3.3
SHW 27CA	27	80	72.8	70	40	M6	5.3	56.6	10	23.5	6	3.5
SHW 35CA	35	120	107	107	60	M8	6.8	83	14	31	7.6	4
SHW 50CA	50	162	141	144	80	M10	8.6	107	18	46	14	4


Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.


Model number coding SHW17 QZ +580L LM rail length Contamination Stainless Symbol for Model Type of With QZ Stainless Lubricator protection steel (in mm) No. of rails used steel number LM block accessory LM block on the same LM rail symbol (*1) plane (*4) Accuracy symbol (*3) No. of LM blocks Radial clearance symbol (*2) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP) used on the same Normal (No symbol) Light preload (C1) Medium preload (C0)

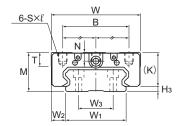
(*1) See contamination protection accessory on △1-352. (*2) See △1-89. (*3) See △1-95. (*4) See △1-35.

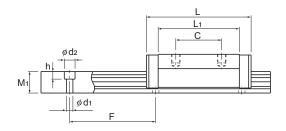
Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Models SHW17CAM and SHW21 to 50CA

Unit: mm


			LM ra	ail dim	ensions		Basic rati				permi: nent kN			Ма	ss
Width			Height	Pitch		Length*	O	Co		•	1		₩ S	LM block	LM rail
W ₁ 0 -0.05	W_2	Wз	M1	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
18	11	_	6.6	40	4.5×7.5×5.3	1000	4.31	5.66	0.0228	0.12	0.0228	0.12	0.0405	0.05	8.0
24	13	_	7.5	40	4.5×7.5×5.3	1430	7.05	8.98	0.0466	0.236	0.0466	0.236	0.0904	0.1	1.23
33	13.5	18	8.6	40	4.5×7.5×5.3	1800	7.65	10.18	0.0591	0.298	0.0591	0.298	0.164	0.15	1.9
37	15.5	22	11	50	4.5×7.5×5.3	1900	8.24	12.8	0.0806	0.434	0.0806	0.434	0.229	0.24	2.9
42	19	24	15	60	4.5×7.5×5.3	3000	16	22.7	0.187	0.949	0.187	0.949	0.455	0.47	4.5
69	25.5	40	19	80	7×11×9	3000	35.5	49.2	0.603	3	0.603	3	1.63	1.4	9.6
90	36	60	24	80	9×14×12	3000	70.2	91.4	1.46	7.37	1.46	7.37	3.97	3.7	15


Note) If a grease nipple is required, indicate "with grease nipple;" if a greasing hole is required, indicate "with a tapped hole for The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-48.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SHW-CR and SHW-HR

Models SHW27 to 50CR

	Oute	er dimens	sions			LM bloc	ck dimen	sions			
Model No.	Height	Width	Length								
	M	W	L	В	С	s×ℓ	L₁	Т	К	N	Н₃
SHW 12CRM	12	30	37	21	12	M3×3.5	27	4	10	2.8	2
SHW 12HRM	12	30	50.4	21	24	M3×3.5	40.4	4	10	2.8	2
SHW 14CRM	14	40	45.5	28	15	M3×4	34	5	12	3.3	2
SHW 17CRM	17	50	51	29	15	M4×5	38	6	14.5	4	2.5
SHW 21CR	21	54	59	31	19	M5×6	43.6	8	17.7	5	3.3
SHW 27CR	27	62	72.8	46	32	M6×6	56.6	10	23.5	6	3.5
SHW 35CR	35	100	107	76	50	M8×8	83	14	31	7.6	4
SHW 50CR	50	130	141	100	65	M10×15	107	18	46	14	4

Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly corrosion resistance and environment.

Model number coding QZ **KKHH** C₁ +820L SHW17 CR Model Type of With QZ

LM block No. of LM blocks used on the same Contamination protection accessory symbol (*1)

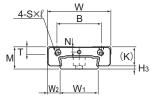
steel

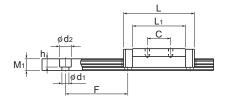
Stainless LM rail length (in mm) LM block

LM rail is made of stainless steel

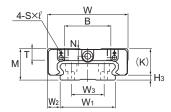
Symbol for No. of rails used on the same plane (* 4)

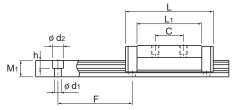
Radial clearance symbol (*2) Accuracy symbol (*3) Normal (No symbol) Light preload (C1) rail Medium preload (C0)


Normal grade (No Symbol)
High accuracy grade (H)/Precision grade (P)
Super precision grade (SP)/Ultra precision grade (UP)


(*1) See contamination protection accessory on A1-352. (*2) See A1-89. (*3) See A1-95. (*4) See A1-35.

Note) Those models equipped with QZ Lubricator cannot have a grease nipple.


Lubricator


number

Models SHW12CRM, SHW12HRM and SHW14CRM

Models SHW17CRM and SHW21CR

			LM r	ail dim	ensions		Basic rati				perminent kN			Ма	ISS
Width			Height	Pitch		Length*	O	C°	2 (•	2	█<ੵ	M _°	LM block	LM rail
W₁ 0 -0.05	W_2	W₃	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
18	6	-	6.6	40	4.5×7.5×5.3	1000	4.31	5.66	0.0228	0.12	0.0228	0.12	0.0405	0.04	8.0
18	6	_	6.6	40	4.5×7.5×5.3	1000	5.56	8.68	0.0511	0.246	0.0511	0.246	0.0621	0.06	8.0
24	8	_	7.5	40	4.5×7.5×5.3	1430	7.05	8.98	0.0466	0.236	0.0466	0.236	0.0904	80.0	1.23
33	8.5	18	8.6	40	4.5×7.5×5.3	1800	7.65	10.18	0.0591	0.298	0.0591	0.298	0.164	0.13	1.9
37	8.5	22	11	50	4.5×7.5×5.3	1900	8.24	12.8	0.0806	0.434	0.0806	0.434	0.229	0.19	2.9
42	10	24	15	60	4.5×7.5×5.3	3000	16	22.7	0.187	0.949	0.187	0.949	0.455	0.36	4.5
69	15.5	40	19	80	7×11×9	3000	35.5	49.2	0.603	3	0.603	3	1.63	1.2	9.6
90	20	60	24	80	9×14×12	3000	70.2	91.4	1.46	7.37	1.46	7.37	3.97	3	15

Note) If a grease nipple is required, indicate "with grease nipple;" if a greasing hole is required, indicate "with a tapped hole for The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-48.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SHW variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

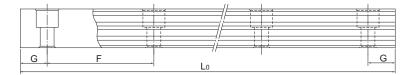
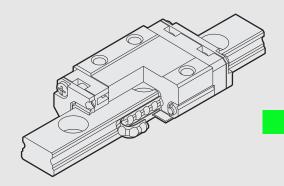



Table1 Standard Length and Maximum Length of the LM Rail for Model SHW

Unit: mm

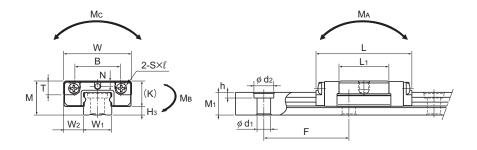
Model No.	SHW 12	SHW 14	SHW 17	SHW 21	SHW 27	SHW 35	SHW 50
LM rail standard length (L₀)	70 110 150 190 230 270 310 390 470	70 110 150 190 230 270 310 390 470 550 670	110 190 310 470 550	130 230 380 480 580 780	160 280 340 460 640 820	280 440 760 1000 1240 1560	280 440 760 1000 1240 1640 2040
Standard pitch F	40	40	40	50	60	80	80
G	15	15	15	15	20	20	20
Max length	1000	1430	1800	1900	3000	3000	3000

Note1) The maximum length varies with accuracy grades. Contact THK for details. Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK. Note3) Models SHW12, 14 and 17 are made of stainless steel.

SRS

Caged Ball LM Guides

Product Specifications

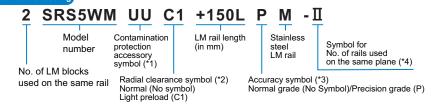

Dimensional Drawing, Dimensional Table Model SRS5M and SRS5WM Model SRS-M and SRS-N Model SRS-WM and SRS-WN Standard Length and Maximum Length	B1-50 B1-52 B1-54
of the LM Rail	■ 1-56
Options	■ 1-235
with LaCS and Seals Attached Incremental Dimension with Grease Nipple	■ 1-237
(When LaCS is Attached)	B1-243
LM Block Dimension (Dimension L)	1-202
with QZ Attached	B1-265
Course imprison and Courseling Field Model City.	1-203

□ Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features 🔼 1-137 Types and Features A1-138 Rated Loads in All Directions...... A1-139 Equivalent Load A1-139 Radial Clearance Standard A1-89 Accuracy Standards A1-101 Shoulder Height of the Mounting Base and the Corner Radius A1-314 Error Allowance in the Parallelism between Two Rails A1-316 Error Allowance in Vertical Level between Two Rails A1-319 Flatness of the LM Rail and the LM Block Mounting Surface A1-140

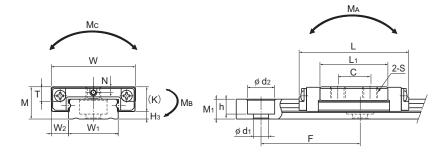
^{*} Please see the separate "A Technical Descriptions of the Products".

Models SRS5M, SRS5WM



SRS5M

	Oute	r dimen	sions	LM block dimensions								
Model No.	Height Width Length											
	М	W	L	В	С	s×ℓ	L ₁	Т	К	N	Н₃	
SRS 5M	6	12	16.9	8	_	M2×1.5	8.8	1.7	4.5	0.93	1.5	
SRS 5WM	6.5	17	22.1	_	6.5	M3 through	13.7	2.7	5	1.1	1.5	


Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.

Model number coding

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-89. (*3) See ▲1-101. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set.(i.e. If you are using 2 shafts in parallel, the required number of sets is 2.)

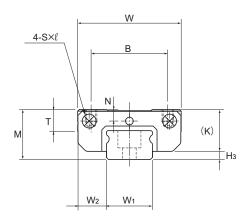
SRS5WM

	L	.M rail	dimer	nsions			Load ting	Static permissible moment N·m*					Mass	
Width		Height	Pitch		Length*	С	C ₀		∏ ✓ ⋝		T' =	(1) §	LM block	LM rail
W ₁	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	N	N	1 block	Double blocks		Double blocks		kg	kg/m
5 ⁰ -0.02	3.5	4	15	2.4×3.5×1	200	439	468	0.74	5.11	0.86	5.99	1.21	0.002	0.13
10 0	3.5	4	20	3×5.5×3	200	584	703	1.57	9.59	1.83	11.24	3.58	0.005	0.27

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See ■1-56.) Static Permissible Moment*

1 block: Static permissible moment value with 1 LM block

Double blocks: static permissible moment value with double block closely contacting with each other


 Reference bolt tightening torque when mounting an LM block for model SRS 5M/5WM is shown in the table below.

Reference tightening torque

Model No.	Model No. of screw	Screw depth (mm)	Reference tightening torque (N·m)*
SRS 5M	M2	1.5	0.4
SRS 5WM	M3	2.3	0.4

Tightening above the tightening torque affects accuracy. Be sure to tighten at or below the defined tightening torque.

Models SRS-M and SRS-N

	Oute	er dimens	sions								
Model No.	Height	Width	Length								
	М	W	L	В	С	s×ℓ	L ₁	Т	К	N	Нз
SRS 7M	8	17	23.4	12	8	M2×2.3	13.4	3.3	6.7	1.6	1.3
SRS 9M SRS 9N	10	20	30.8 40.8	15	10 16	M3×2.8	19.8 29.8	4.9	9.1	2.4	0.9
SRS 12M SRS 12N	13	27	34.4 47.1	20	15 20	M3×3.2	20.6 33.3	5.7	11	3	2
SRS 15M SRS 15N	16	32	43 60.8	25	20 25	M3×3.5	25.7 43.5	6.5	13.3	3	2.7
SRS 20M	20	40	50	30	25	M4×6	34	9	16.6	4	3.4
SRS 25M	25	48	77	35	35	M6×7	56	11	20	5	5

Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.

Model number coding

C1 +220L

With QZ Model Lubricator protection number

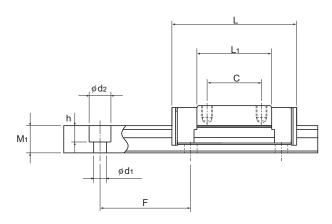
Contamination accessory symbol (*1)

LM rail length (in mm)

Stainless steel LM rail

Symbol for No. of rails used on the same plane (*4)

No. of LM blocks used on the same rail


Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H)

Precision grade (P)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-89. (*3) See ▲1-101. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

	L	M rail	dimer	nsions					permissible ment N-m*			Mass		
Width		Height	Pitch		Length*	O	Cº	~	 	= الاسا		(j) §	LM block	LM rail
W_1	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
7 ⁰ _{-0.02}	5	4.7	15	2.4×4.2×2.3	300	1.51	1.29	3.09	17.2	3.69	17.3	5.02	0.009	0.25
9 0 -0.02	5.5	5.5	20	3.5×6×3.3	1000	2.69 3.48		7.82 15.5	43.9 81.4	9.03 17.9	50.8 94.3	10.6 15.3	0.016 0.027	0.32
12 0 -0.02	7.5	7.5	25	3.5×6×4.5	1340	4 5.82	3.53 5.30	12 28.4	78.5 151	12 28.4	78.5 151	23.1 34.7	0.027 0.049	0.65
15 0 -0.02	8.5	9.5	40	3.5×6×4.5	1430	6.66 9.71		26.2 59.7	154 312	26.2 59.7	154 312	40.4 60.7	0.047 0.095	0.96
20 0 -0.03	10	11	60	6×9.5×8	1800	7.75	9.77	54.3	296	62.4	341	104	0.11	1.68
23 0 -0.03	12.5	15	60	7×11×9	1800	16.5	20.2	177	932	177	932	248	0.24	2.6

Note) If a grease nipple is required, indicate "with grease nipple". (available for models SRS 15M/15N/15WM/ 15WN/20M/25M)

If a greasing hole is required, indicate "with greasing hole". (available for models SRS 7M/7WM/9M/9N/9WM/9WN/12M/12N/12WM/12WN).

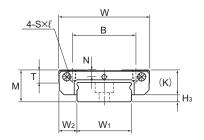
The maximum length under "Length *" indicates the standard maximum length of an LM rail. (See 11-56.) Static Permissible Moment*

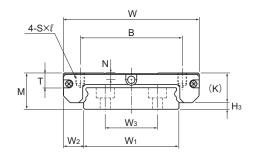
1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks in close contact

SRS-G Basic Load Ratings

	Basic load rating						
Model No.	С	C ₀					
	kN	kN					
SRS 9GM	2.07	2.32					
SRS 12GM	3.36	3.55					
SRS 15GM	5.59	5.72					
SRS 20GM	5.95	9.40					
SRS 25GM	13.3	22.3					


 Reference bolt tightening torque when mounting an LM block for model SRS 7M is shown in the table below.


Reference tightening torque

Model No.	Model No. of screw	Screw depth (mm)	Reference tightening torque (N·m)*
SRS 7M	M2	2.3	0.4

^{*} Tightening above the tightening torque affects accuracy. Be sure to tighten at or below the defined tightening torque.

Models SRS-WM and SRS-WN

Models SRS7WM/9, 12WM/WN

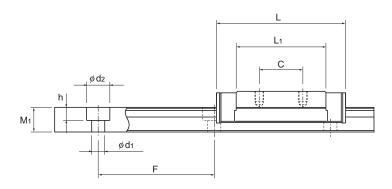
Models SRS15WM/WN

	Oute	er dimens	sions								
Model No.	Height	Width	Length								
	М	W	L	В	С	s×ℓ	L ₁	Т	К	N	H₃
SRS 7WM	9	25	31	19	10	M3×2.8	20.4	3.8	7.2	1.8	1.8
SRS 9WM SRS 9WN	12	30	39 50.7	21 23	12 24	M3×2.8	27 38.7	4.9	9.1	2.3	2.9
SRS 12WM SRS 12WN	14	40	44.5 59.5	28	15 28	M3×3.5	30.9 45.9	5.7	11	3	3
SRS 15WM SRS 15WN	16	60	55.5 74.5	45	20 35	M4×4.5	38.9 57.9	6.5	13.3	3	2.7

Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.

Model number coding +550L With QZ Contamination Model LM rail length Stainless protection Symbol for (in mm) steel number Lubricator No. of rails used accessory LM rail on the same plane (*4) symbol (*1) No. of LM blocks Radial clearance symbol (*2) Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-89. (*3) See ▲1-101. (*4) See ▲1-35.


Precision grade (P)

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Normal (No symbol) Light preload (C1)

used on the same rail

LM rail dimensions					Basic rat		Static permissible moment N-m*					Mass			
Width			Height	Pitch		Length*	С	C°					(1) §	LM block	LM rail
W ₁	W_2	Wз	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks		Double blocks	1 block	kg	kg/m
14 0 -0.02	5.5	ı	5.2	30	3.5×6×3.2	400	2.01	1.94	6.47	22.7	7.71	22.7	14.33	0.018	0.56
18 0 -0.02	6	1	7.5	30	3.5×6×4.5	1000	3.29 4.20	3.34 4.37	14 25.1	78.6 130	16.2 29.1	91 151	31.5 41.3	0.031 0.049	1.01
24 0 -0.02	8	_	8.5	40	4.5×8×4.5	1430	5.48 7.13		26.4 49.2	143 249	26.4 49.2	143 249	66.5 88.7	0.055 0.091	1.52
42 0 -0.02	9	23	9.5	40	4.5×8×4.5	1800	9.12 12.4		51.2 106	290 532	51.2 106	290 532	176 250	0.13 0.201	2.87

Note) If a grease nipple is required, indicate "with grease nipple". (available for models SRS 15M/15N/15WM/15WN/20M/25M)

If a greasing hole is required, indicate "with greasing hole". (available for models SRS 7M/7WM/9M/9M/9W/9WN/12M/12N/12WM/12WN).

The maximum length under "Length * " indicates the standard maximum length of an LM rail. (See 11-56.) Static Permissible Moment*

1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each SRS-G Basic Load Ratings

	Basic load rating					
Model No.	C kN	C₀ kN				
SRS 9WGM	2.67	3.35				
SRS 12WGM	4.46	5.32				
SRS 15WGM	7.43	8.59				

 Reference bolt tightening torque when mounting an LM block for model SRS 7WM is shown in the table below.

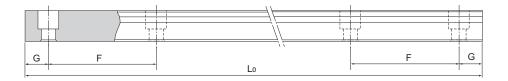
Reference tightening torque

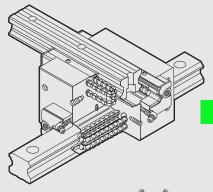
Model No.	Model No. of screw	Screw depth (mm)	Reference tightening torque (N·m)*
SRS 7WM	M3	2.8	0.4

Tightening above the tightening torque affects accuracy. Be sure to tighten at or below the defined tightening torque.

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SRS variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.




Table1 Standard Length and Maximum Length of the LM Rail for Model SRS

Unit: mm

Model No.	SRS 5M	SRS 5WM	SRS 7M	SRS 7WM	SRS 9M/N	SRS 9WM/WN	SRS 12M/N	SRS 12WM/WN	SRS 15M/N	SRS 15WM/WN	SRS 20M	SRS 25M
LM rail standard length (L _o)	40 55 70 100 130 160	50 70 90 110 130 150 170	40 55 70 85 100 115 130	50 80 110 140 170 200 260 290	55 75 95 115 135 155 175 195 275 375	50 80 110 140 170 200 260 290 320	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 190 230 270 310 390 470 550	70 110 150 190 230 270 310 350 390 430 470 550 670 870	110 150 190 230 270 310 430 550 670 790	220 280 340 460 640 880 1000	220 280 340 460 640 880 1000
Standard pitch F	15	20	15	30	20	30	25	40	40	40	60	60
G	5	5	5	10	7.5	10	10	15	15	15	20	20
Max length	200	200	300	400	1000	1000	1340	1430	1430	1800	1800	1800

Note1) The maximum length varies with accuracy grades. Contact THK for details.

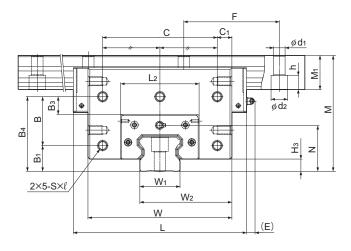
Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

SCR

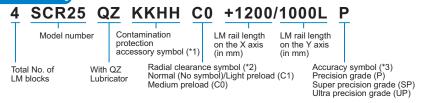
Caged

Caged Ball LM Guides

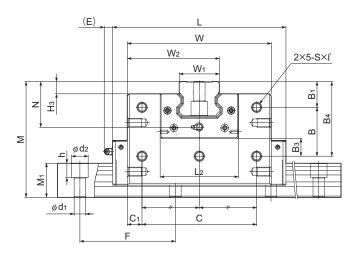
B Product Specifications


Dimensional Drawing, Dimensional Table Model SCR	■ 1-58
Standard Length and Maximum Length of the LM Rail	■ 1-60 ■ 1-61
Options	E1-235 E1-237 E1-262 E1-263

▲ Technical Descriptions of the Products (Separate)

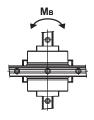

^{*} Please see the separate "A Technical Descriptions of the Products".

Model SCR



	dir	Outer nensic		LM block dimensions										
Model No.	Height M	Width W	Length L	B ₁	B₃	B ₄	В	С	C ₁	s×ℓ	L ₂	Нз	N	E
SCR 15S	47	48	64.4	_	11.3	34.8	_	20	14	M4×6	33.4	3	18.5	5.5
SCR 20S	57	59	79	_	13	42.5	_	30	14.5	M5×8	43	4.6	23.5	12
SCR 20	57	78	98	13	7.5	37	24	56	11	M5×8	43	4.6	23.5	12
SCR 25	70	88	109	18	9	44	26	64	12	M6×10	47.4	5.8	28.5	12
SCR 30	82	105	131	21	12	53	32	76	14.5	M6×10	58	7	34	12
SCR 35	95	123	152	24	14	61	37	90	16.5	M8×14	68	7.5	40	12
SCR 45	118	140	174	30	16.5	75	45	110	15	M10×15	84.6	8.9	49.5	16
SCR 65	180	226	272	40	27.5	116	76	180	23	M14×22	123	19	71	16

Model number coding

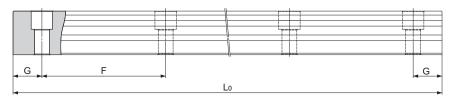


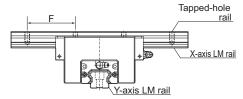
(*1) See contamination protection accessory on \$\textstyle{\textstyle{1}}\)-352. (*2) See \$\textstyle{\textstyle{1}}\)-89. (*3) See \$\textstyle{\textstyle{1}}\)-98.

		LN	/I rail dim	ensions		Basic load rating		Static permissible moment		Mass	
Grease	Width		Height	Pitch	Mounting hole	O	Co	Мо	Мв	LM block	LM rail
nipple	W ₁ 0 -0.05	W_2	M₁	F	$d_1 \times d_2 \times h$	kN	kN	kN-m	kN-m	kg	kg/m
PB-1021B	15	31.5	13	60	4.5×7.5×5.3	14.2	24.2	0.16	0.296	0.54	1.3
B-M6F	20	39.5	16.5	60	6×9.5×8.5	22.3	38.4	0.361	0.334	0.88	2.3
B-M6F	20	49	16.5	60	6×9.5×8.5	28.1	50.3	0.473	0.568	1.7	2.3
B-M6F	23	55.5	20	60	7×11×9	36.8	64.7	0.696	0.85	3.4	3.2
B-M6F	28	66.5	23	80	9×14×12	54.2	88.8	1.15	1.36	4.6	4.5
B-M6F	34	78.5	26	80	9×14×12	72.9	127	2.01	2.34	6.8	6.2
B-PT1/8	45	92.5	32	105	14×20×17	100	166	3.53	3.46	10.8	10.4
B-PT1/8	63	144.5	53	150	18×26×22	253	408	11.9	13.3	44.5	23.7

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard and maximum lengths of the SCR model rail. If a rail length longer than the listed max length is required, rails may be jointed to meet the overall length. Contact THK for details. For special rail lengths, it is recommended to use a value corresponding to the G dimension from the table. As the G dimension increases, this portion becomes less stable and the accuracy performance is severely impacted.




Table1 Standard Length and Maximum Length of the LM Rail for Model SCR

Unit: mm

Model No.	SCR 15	SCR 20	SCR 25	SCR 30	SCR 35	SCR 45	SCR 65
LM rail standard length (L₀)	160 220 280 340 400 460 520 580 640 700 760 820 940 1000 1180 1180 1240 1360 1480 1600	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600 1720 1840 1960 2080 2200	220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1360 1420 1480 1540 1600 1720 1840 1960 2080 2200 2320 2440	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1880 1960 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	1270 1570 2020 2620
Standard pitch F	60	60	60	80	80	105	150
G	20	20	20	20	20	22.5	35
Max length	2500	3000	3000	3000	3000	3090	3000

Tapped-hole LM Rail Type of Model SCR

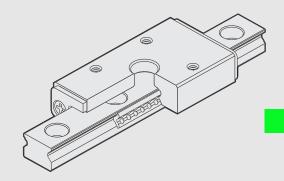
The model SCR variations include a type with its LM rail bottom tapped. With the X-axis LM rail having tapped holes, this model can be secured with bolts from the top.

Model No.	Tap diamete	Tap depth
15	M5	8
20	M6	10
25	M6	12
30	M8	15
35	M8	17
45	M12	20

M20

Table2 Dimensions of the LM Rail Tap

Unit: mm


30

Model number coding

4 SCR35 KKHH C0 +1000L P K/1000L P

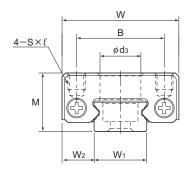
65

Symbol for tapped-hole LM rail type

EPF

Caged Ball LM Guides

Product Specifications


Dimensional Drawing, Dimensional Table	
Model EPF	B 1-64
Standard Length of the LM Rail	■ 1-66

▲ Technical Descriptions of the Products (Separate)

Technical Descriptions	
Structure and Features	A1-147
Types and Features	A1-148
Rated Loads in All Directions	A1-149
Equivalent Load	A1-149
Service Life	A1-76
Radial Clearance Standard	A1-91
Accuracy Standards	A1-104
Shoulder Height of the Mounting Base	
and the Corner Radius	A1-310
Accuracy of the Mounting Surface	A1-150

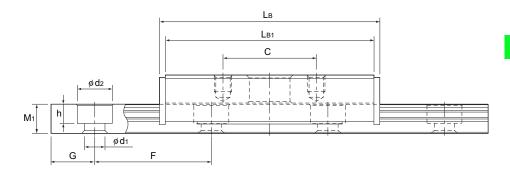
^{*} Please see the separate "A Technical Descriptions of the Products".

Model EPF

	Oute	er dimens	sions		LM b	lock dim	ensions	LM rail dimensions				
Model No.	Height	Width	Length									
	М	W	LB	В	С	d₃	s×ℓ	L _{B1}	W ₁	W ₂	M ₁	
EPF 7M	8	17	31.6	12	13	5	M2×2.3	29.6	7	5	5	
EPF 9M	10	20	37.8	15	16	7	M3×2.8	35.8	9	5.5	5	
EPF 12M	13	27	43.7	20	20	7	M3×3.2	41.7	12	7.5	6.75	
EPF 15M	16	32	56.5	25	25	7	M3×3.5	54.5	15	8.5	9	

Model number coding

EPF7M* 16 +55L P M


LM rail length (in mm) Rail material: Stainless steel (standard)

Accuracy symbol (*1)

(in mm)

(*1) See A1-104.

Note) *: Stainless steel is the standard material used for LM blocks.
This model number denotes one set consists of an LM block and LM rail.

			Guaran- Basic load teed stroke rating			Static per	Mass			
D	F	$d_1 \times d_2 \times h$	S ⊤	C kN	C₀ kN	M _O A	Мов	M _{oc}	LM block kg	LM rail
5	15	2.4×4.2×2.6	16	0.90	1.60	5.08	5.08	5.26	0.019	0.230
7.5	20	3.5×6×3.3	21	1.00	1.87	6.81	6.81	7.89	0.036	0.290
10	25	3.5×6×3.8	27	2.26	3.71	15.5	15.5	20.8	0.074	0.550
15	40	3.5×6×4	34	3.71	5.88	33.0	33.0	41.3	0.136	0.940

Note) THK AFJ grease is provided as the standard grease.

Recommended Tightening Torques of Mounting Bolts

Unit: N-m

M. I.I.	Nominal	Rated tightening torque								
Model No.	bolt	Iron	Casting	Alumi- num						
EPF 7M	M2	0.588	0.392	0.294						
EPF 9M										
EPF 12M	МЗ	1.96	1.27	0.98						
EPF 15M										

Table1 Maximum slip resistance

Unit: N

Model No.	Maximum slip resistance
EPF 7M	20
EPF 9M	20
EPF 12M	30
EPF 15M	30

Note) While the cage used to hold the balls is designed to operate extremely precisely, factors such as impacts or inertial moment or drive vibration from the machine of mental moment of drive vibration from the machine can cause cage distortion.

If using the EPF LM guide in the following conditions, contact THK.

- Vertical Orientation
- Under a large moment load
- Butting the guide's external stopper with the table For applications involving high acceleration/decelera-

If cage distortion occurs, the cage must be forcibly restored to its original shape.

Table 1 shows the required slip resistance in this

Set the thrust so that it is no less than the maximum value shown in the table.

Standard Length of the LM Rail

For special rail lengths, it is recommended to use a value corresponding to the G dimension from the table. As the G dimension increases, this portion becomes less stable and the accuracy performance is severely impacted.

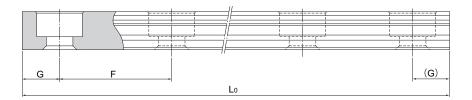


Table2 Standard Length of the LM Rail for Model EPF

Unit: mm

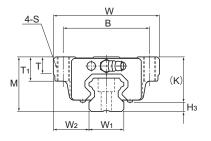
Model No.	EPF 7M	EPF 9M	EPF 12M	EPF 15M
LM rail standard length (L ₀)	55	75	95	110
Standard pitch F	15	20	25	40
G	5	7.5	10	15

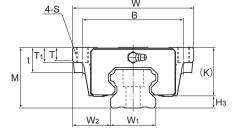
Note) Lengths other than the standard LM rail length (L_0) are also available. Contact THK for details.

HSR

LM Guide

B Product Specifications


Dimensional Drawing, Dimensional Table Models HSR-A and HSR-AM,	
Models HSR-LA and HSR-LAM	B 1-68
Models HSR-B, HSR-BM, HSR-LB and HSR-LBM	B 1-70
Model HSR-C Grade Ct	
Model HSR-RM	B 1-72
Models HSR-R, HSR-RM,	■ 1-74
HSR-LR and HSR-LRM	10 4 70
Model HSR-R Grade Ct	B1-76
Models HSR-YR and HSR-YRM	B 1-78
	■ 1-80
Models HSR-CA, HSR-CAM, HSR-HA and HSR-HAM	
	■ 1-82
Models HSR-CB, HSR-CBM,	
HSR-HB and HSR-HBM	B 1-84
Models HSR-HA, HSR-HB and HSR-HR.	■ 1-86
Standard Langth and Maximum Langth	
Standard Length and Maximum Length of the LM Rail	5 4.00
	B1-88
Tapped-hole LM Rail Type of Model HSR	B 1-89
Stopper	B 1-90
Options	B 1-235
The LM Block Dimension (Dimension L)	<u>□</u> 1-233
with LaCS and Seals Attached	■ 1-237
Incremental Dimension with Grease Nipple	□ 1-237
(When LaCS is Attached)	D4 044
Dedicated Bellows JH for Model HSR	B1-244
Dedicated Bellows DH for Model HSR	B1-251
Dedicated LM Cover TPH for Model HSR	B1-252
	B 1-260
Cap CC	B1-262
Cap GC	B 1-263
LM Block Dimension (Dimension L)	E14 00E
with QZ Attached	B 1-265


□ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models HSR-A and HSR-AM, Models HSR-LA and HSR-LAM

Models HSR15 to 35A/LA/AM/LAM

Models HSR45 to 85A/LA

Outer	dimer	nsions					LM bl	ock dir	nensio	ons				
Height M	Width W	Length L	В	С	S	L ₁	t	Т	T ₁	К	Ν	E	Grease nipple	Нз
24	47	56.6	38	30	M5	38.8	_	7	11	19.3	4.3	5.5	PB1021B	4.7
30	63	74	53	40	M6	50.8	-	9.5	10	26	5	12	B-M6F	4
30	63	90	53	40	M6	66.8	_	9.5	10	26	5	12	B-M6F	4
36	70	83.1	57	45	M8	59.5	_	11	16	30.5	6	12	B-M6F	5.5
36	70	102.2	57	45	M8	78.6	_	11	16	30.5	6	12	B-M6F	5.5
42	90	98	72	52	M10	70.4	_	9	18	35	7	12	B-M6F	7
42	90	120.6	72	52	M10	93	_	9	18	35	7	12	B-M6F	7
48	100	109.4	82	62	M10	80.4	_	12	21	40.5	8	12	B-M6F	7.5
48	100	134.8	82	62	M10	105.8	_	12	21	40.5	8	12	B-M6F	7.5
60	120	139 170.8	100	80	M12	98 129.8	25	13	15	50	10	16	B-PT1/8	10
70	140	163 201.1	116	95	M14	118 156.1	29	13.5	17	57	11	16	B-PT1/8	13
90	170	186 245.5	142	110	M16	147 206.5	37	21.5	23	76	19	16	B-PT1/8	14
110	215	245.6 303	185	140	M20	178.6 236	55	28	30	94	23	16	B-PT1/8	16
	Height M 24 30 36 36 42 42 48 48 60 70 90	Height Width M W 24 47 30 63 30 63 36 70 36 70 42 90 42 90 48 100 48 100 60 120 70 140 90 170	24 47 56.6 30 63 74 30 63 90 36 70 83.1 36 70 102.2 42 90 98 42 90 120.6 48 100 109.4 48 100 134.8 60 120 139 170.8 70 140 163 201.1 90 170 186 245.5	Height Width Length M W L B 24 47 56.6 38 30 63 74 53 30 63 90 53 36 70 83.1 57 36 70 102.2 57 42 90 98 72 42 90 120.6 72 48 100 109.4 82 48 100 134.8 82 60 120 139 70 140 163 201.1 116 90 170 186 245.5 142	Height Width Length M W L B C 24 47 56.6 38 30 30 63 74 53 40 30 63 90 53 40 36 70 83.1 57 45 36 70 102.2 57 45 42 90 98 72 52 42 90 120.6 72 52 48 100 109.4 82 62 48 100 134.8 82 62 48 100 134.8 82 62 60 120 139 170.8 100 80 70 140 163 201.1 116 95 90 170 186 245.5 142 110	Height Width Length M W L B C S 24 47 56.6 38 30 M5 30 63 74 53 40 M6 30 63 90 53 40 M6 36 70 83.1 57 45 M8 36 70 102.2 57 45 M8 42 90 98 72 52 M10 42 90 120.6 72 52 M10 48 100 109.4 82 62 M10 48 100 134.8 82 62 M10 48 100 134.8 82 62 M10 60 120 139 170.8 100 80 M12 70 140 163 201.1 116 95 M14 90 170 186 245.5 142 110 M16	Height Width Length M W L B C S L ₁ 24 47 56.6 38 30 M5 38.8 30 63 74 53 40 M6 50.8 30 63 90 53 40 M6 66.8 36 70 83.1 57 45 M8 59.5 36 70 102.2 57 45 M8 78.6 42 90 98 72 52 M10 70.4 42 90 120.6 72 52 M10 93 48 100 109.4 82 62 M10 80.4 48 100 134.8 82 62 M10 105.8 60 120 139 170.8 100 80 M12 19.98 70 140 163 116 95 M14 118 90 170 186 245.5 142 110 M16 206.5 140 245.5 142 110 M16 206.5	Height Width Length M W L B C S L ₁ t 24 47 56.6 38 30 M5 38.8 — 30 63 74 53 40 M6 50.8 — 30 63 90 53 40 M6 66.8 — 36 70 83.1 57 45 M8 59.5 — 36 70 102.2 57 45 M8 78.6 — 42 90 98 72 52 M10 70.4 — 42 90 120.6 72 52 M10 93 — 48 100 109.4 82 62 M10 80.4 — 48 100 134.8 82 62 M10 105.8 — 60 120 139 170.8 100 80 M12 98 129.8 25 70 140 163 201.1 116 95 M14 118 129 90 170 186 245.5 142 110 M16 206.5 37	Height Width Length B C S Li t T 24 47 56.6 38 30 M5 38.8 — 7 30 63 74 53 40 M6 50.8 — 9.5 30 63 90 53 40 M6 66.8 — 9.5 36 70 83.1 57 45 M8 59.5 — 11 42 90 98 72 52 M10 70.4 — 9 42 90 120.6 72 52 M10 70.4 — 9 48 100 109.4 82 62 M10 80.4 — 12 48 100 134.8 82 62 M10 105.8 — 12 60 120 139 100 80 M12 198 25 13 70	Height Width Length B C S L ₁ t T T ₁ 24 47 56.6 38 30 M5 38.8 — 7 11 30 63 74 53 40 M6 50.8 — 9.5 10 30 63 90 53 40 M6 66.8 — 9.5 10 36 70 83.1 57 45 M8 59.5 — 11 16 42 90 98 72 52 M10 70.4 — 9 18 42 90 120.6 72 52 M10 93 — 9 18 48 100 109.4 82 62 M10 80.4 — 12 21 48 100 134.8 82 62 M10 105.8 — 12 21 60 120	Height Width Length B C S Li t T Ti K 24 47 56.6 38 30 M5 38.8 — 7 11 19.3 30 63 74 53 40 M6 50.8 — 9.5 10 26 30 63 90 53 40 M6 66.8 — 9.5 10 26 36 70 83.1 57 45 M8 59.5 — 11 16 30.5 36 70 102.2 57 45 M8 78.6 — 11 16 30.5 42 90 98 72 52 M10 70.4 — 9 18 35 42 90 120.6 72 52 M10 93 — 9 18 35 48 100 134.8 82 62 <	Height Width Length B C S L ₁ t T T ₁ K N 24 47 56.6 38 30 M5 38.8 — 7 11 19.3 4.3 30 63 74 53 40 M6 50.8 — 9.5 10 26 5 30 63 90 53 40 M6 66.8 — 9.5 10 26 5 36 70 83.1 57 45 M8 59.5 — 11 16 30.5 6 36 70 102.2 57 45 M8 78.6 — 11 16 30.5 6 42 90 98 72 52 M10 70.4 — 9 18 35 7 48 100 109.4 82 62 M10 80.4 — 12 21 <	Height Width Length B C S L ₁ t T T ₁ K N E 24 47 56.6 38 30 M5 38.8 — 7 11 19.3 4.3 5.5 30 63 74 53 40 M6 50.8 — 9.5 10 26 5 12 30 63 90 53 40 M6 66.8 — 9.5 10 26 5 12 36 70 83.1 57 45 M8 59.5 — 11 16 30.5 6 12 36 70 102.2 57 45 M8 78.6 — 11 16 30.5 6 12 42 90 98 72 52 M10 70.4 — 9 18 35 7 12 48 100 109.4 <td< td=""><td>Height Width Length M W L B C S L t T T T K N E Grease nipple 24 47 56.6 38 30 M5 38.8 — 7 11 19.3 4.3 5.5 PB1021B 30 63 74 53 40 M6 50.8 — 9.5 10 26 5 12 B-M6F 30 63 90 53 40 M6 66.8 — 9.5 10 26 5 12 B-M6F 36 70 83.1 57 45 M8 59.5 — 11 16 30.5 6 12 B-M6F 42 90 98 72 52 M10 70.4 — 9 18 35 7 12 B-M6F 42 90 120.6 72 52 M10 93 — 9 18 35 7 12 B-M6F 48 100 109.4 82 62 M10 80.4 — 12 21 40.5 8 12 B-M6F 48 100 134.8 82 62 M10 80.4 — 12 21 40.5 8 12 B-M6F 60 120 139 170.8 100 80 M12 98 129.8 25 13 15 50 10 16 B-PT1/8 90 170 186 245.5 142 110 M16 246.7 37 21.5 23 76 19 16 B-PT1/8</td></td<>	Height Width Length M W L B C S L t T T T K N E Grease nipple 24 47 56.6 38 30 M5 38.8 — 7 11 19.3 4.3 5.5 PB1021B 30 63 74 53 40 M6 50.8 — 9.5 10 26 5 12 B-M6F 30 63 90 53 40 M6 66.8 — 9.5 10 26 5 12 B-M6F 36 70 83.1 57 45 M8 59.5 — 11 16 30.5 6 12 B-M6F 42 90 98 72 52 M10 70.4 — 9 18 35 7 12 B-M6F 42 90 120.6 72 52 M10 93 — 9 18 35 7 12 B-M6F 48 100 109.4 82 62 M10 80.4 — 12 21 40.5 8 12 B-M6F 48 100 134.8 82 62 M10 80.4 — 12 21 40.5 8 12 B-M6F 60 120 139 170.8 100 80 M12 98 129.8 25 13 15 50 10 16 B-PT1/8 90 170 186 245.5 142 110 M16 246.7 37 21.5 23 76 19 16 B-PT1/8

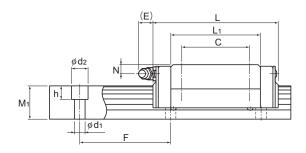
Model number coding

HSR25 C₀ M +1200L

Model Type of number LM block With QZ

Contamination Stainless steel Lubricator accessory symbol (*1) LM block

Stainless steel LM rail length LM rail Symbol for LM rail (in mm)


Symbol for No. of rails used on the same plane (*4)

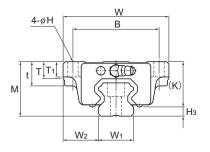
No. of LM blocks used on the same Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)

Accuracy symbol (*3)
Normal grade (No Symbol)/High accuracy grade (H)
Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on △1-352. (*2) See △1-90. (*3) See △1-95. (*4) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

		LM	rail din	nensions		Basic rati		Static	permis	sible m	oment k	kN-m*	Mass	
Width		Height	Pitch		Length*	O	Co	2	✓ ₹	M _B		ال ال	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	16	15	60	4.5×7.5×5.3	3000 (1240)	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.2	1.5
20	21.5	18	60	6×9.5×8.5	3000 (1480)	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.35	2.3
20	21.5	18	60	6×9.5×8.5	3000 (1480)	21.3	31.8	0.323	1.66	0.323	1.66	0.27	0.47	2.3
23	23.5	22	60	7×11×9	3000 (2020)	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.59	3.3
23	23.5	22	60	7×11×9	3000 (2020)	27.2	45.9	0.529	2.74	0.529	2.74	0.459	0.75	3.3
28	31	26	80	9×14×12	3000 (2520)	28	46.8	0.524	2.7	0.524	2.7	0.562	1.1	4.8
28	31	26	80	9×14×12	3000 (2520)	37.3	62.5	0.889	4.37	0.889	4.37	0.751	1.3	4.8
34	33	29	80	9×14×12	3000 (2520)	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.6	6.6
34	33	29	80	9×14×12	3000 (2520)	50.2	81.5	1.32	6.35	1.32	6.35	1.2	2	6.6
45	37.5	38	105	14×20×17	3090	60 80.4	95.6 127	1.42 2.44	7.92 12.6	1.42 2.44	7.92 12.6	1.83 2.43	2.8 3.3	11
53	43.5	44	120	16×23×20	3060	88.5 119	137 183	2.45 4.22	13.2 21.3	2.45 4.22	13.2 21.3	3.2 4.28	4.5 5.7	15.1
63	53.5	53	150	18×26×22	3000	141 192	215 286	4.8 8.72	23.5 40.5	4.8 8.72	23.5 40.5	5.82 7.7	8.5 10.7	22.5
85	65	65	180	24×35×28	3000	210 282	310 412	8.31 14.2	45.6 72.5	8.31 14.2	45.6 72.5	11 14.7	17 23	35.2


Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

The maximum length under "Length" indicates the standard maximum length of an LM rail. (See 1-88.)

Static permissible moment alue with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models HSR-B, HSR-BM, HSR-LB and HSR-LBM

	Outer	dime	nsions					LM bl	ock dir	mensio	ons				
Model No.	Height M	Width	Length L	В	С	Н	L ₁	t	Т	T ₁	К	Z	Е	Grease nipple	Нз
	IVI	- * *	_		Ŭ			•	'	• •	11	- 1 1	_		113
HSR 15B HSR 15BM	24	47	56.6	38	30	4.5	38.8	11	7	7	19.3	4.3	5.5	PB1021B	4.7
HSR 20B HSR 20BM	30	63	74	53	40	6	50.8	10	9.5	10	26	5	12	B-M6F	4
HSR 20LB HSR 20LBM	30	63	90	53	40	6	66.8	10	9.5	10	26	5	12	B-M6F	4
HSR 25B HSR 25BM	36	70	83.1	57	45	7	59.5	16	11	10	30.5	6	12	B-M6F	5.5
HSR 25LB HSR 25LBM	36	70	102.2	57	45	7	78.6	16	11	10	30.5	6	12	B-M6F	5.5
HSR 30B HSR 30BM	42	90	98	72	52	9	70.4	18	9	10	35	7	12	B-M6F	7
HSR 30LB HSR 30LBM	42	90	120.6	72	52	9	93	18	9	10	35	7	12	B-M6F	7
HSR 35B HSR 35BM	48	100	109.4	82	62	9	80.4	21	12	13	40.5	8	12	B-M6F	7.5
HSR 35LB HSR 35LBM	48	100	134.8	82	62	9	105.8	21	12	13	40.5	8	12	B-M6F	7.5
HSR 45B HSR 45LB	60	120	139 170.8	100	80	11	98 129.8	25	13	15	50	10	16	B-PT1/8	10
HSR 55B HSR 55LB	70	140	163 201.1	116	95	14	118 156.1	29	13.5	17	57	11	16	B-PT1/8	13
HSR 65B HSR 65LB	90	170	186 245.5	142	110	16	147 206.5	37	21.5	23	76	19	16	B-PT1/8	14
HSR 85B HSR 85LB	110	215	245.6 303	185	140	18	178.6 236	55	28	30	94	23	16	B-PT1/8	16

Model number coding

Model

number

HSR25 +1200L В

LM block No. of LM blocks

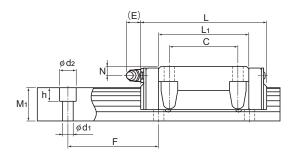
Type of

Lubricator protection accessory symbol (*1) Radial clearance symbol (*2)

Contamination

Stainless steel LM rail length LM block (in mm)

Symbol for Stainless steel No. of rails used LM rail Symbol for LM rail on the same plane (*4) jointed use


used on the same rail

With QZ

Normal (No symbol) Light preload (C1) Medium preload (C0) Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on △1-352. (*2) See △1-90. (*3) See △1-95. (*4) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

														OTTICE TITLE
		LM	rail dir	nensions		Basic rat		Static	permis	sible m	oment l	kN-m*	Ма	ISS
Width		Height	Pitch		Length*	С	Co	2	1 _A	2	18	M _c	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	16	15	60	4.5×7.5×5.3	3000 (1240)	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.2	1.5
20	21.5	18	60	6×9.5×8.5	3000 (1480)	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.35	2.3
20	21.5	18	60	6×9.5×8.5	3000 (1480)	21.3	31.8	0.323	1.66	0.323	1.66	0.27	0.47	2.3
23	23.5	22	60	7×11×9	3000 (2020)	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.59	3.3
23	23.5	22	60	7×11×9	3000 (2020)	27.2	45.9	0.529	2.74	0.529	2.74	0.459	0.75	3.3
28	31	26	80	9×14×12	3000 (2520)	28	46.8	0.524	2.7	0.524	2.7	0.562	1.1	4.8
28	31	26	80	9×14×12	3000 (2520)	37.3	62.5	0.889	4.37	0.889	4.37	0.751	1.3	4.8
34	33	29	80	9×14×12	3000 (2520)	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.6	6.6
34	33	29	80	9×14×12	3000 (2520)	50.2	81.5	1.32	6.35	1.32	6.35	1.2	2	6.6
45	37.5	38	105	14×20×17	3090	60 80.4	95.6 127	1.42 2.44	7.92 12.6	1.42 2.44	7.92 12.6	1.83 2.43	2.8 3.3	11
53	43.5	44	120	16×23×20	3060	88.5 119	137 183	2.45 4.22	13.2 21.3	2.45 4.22	13.2 21.3	3.2 4.28	4.5 5.7	15.1
63	53.5	53	150	18×26×22	3000	141 192	215 286	4.8 8.72	23.5 40.5	4.8 8.72	23.5 40.5	5.82 7.7	8.5 10.7	22.5
 85	65	65	180	24×35×28	3000	210 282	310 412	8.31 14.2	45.6 72.5	8.31 14.2	45.6 72.5	11 14.7	17 23	35.2

Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

The maximum length under "Length" indicates the standard maximum length of an LM rail. (See 18.8.)

Static permissible moment alue with 1 LM block

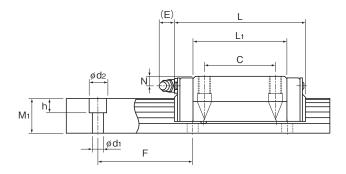
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Model HSR-C Grade Ct

		Outer nensio						LM b	lock c	limens	sions				
Model No.	Height M	Width	Length	В	С	S	н	L₁	Т	T ₁	К	N	Е	Grease nipple	Н₃
HSR 15C (Ct)	24	47	56.6	38	30	M5	4.4	38.8	7	11	19.3	4.3	5.5	PB1021B	4.7
HSR 20C (Ct)	30	63	74	53	40	M6	5.4	50.8	10	9.5	26	5	12	B-M6F	4
HSR 25C (Ct)	36	70	83.1	57	45	M8	6.8	59.5	11	16	30.5	6	12	B-M6F	5.5
HSR 30C (Ct)	42	90	98	72	52	M10	8.5	70.4	9	18	35	7	12	B-M6F	7
HSR 35C (Ct)	48	100	109.4	82	62	M10	8.5	80.4	12	21	40.5	8	12	B-M6F	7.5

Model number coding

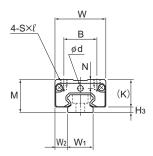
Block: HSR25 C 1 SS Ct BLOCK

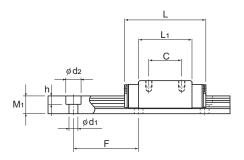

Model Type of LM block This variant: 1 Contamination protection accessory symbol (*1)

Rail: HSR25 -3000L Ct7 RAIL

LM rail length Rail symbol
(in mm)

Accuracy symbol
Ct 7 Class (Ct7) / Ct 5 Class (Ct5)


(*1) See contamination protection accessory on A1-352



		LM	rail dir	nensions			load ing	Static	permis	sible m	oment k	«N-m*	Ма	ISS
Width		Height	Pitch		Length *	С	C ₀	N .	1 _A			(1) §	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	16	15	60	4.5×7.5×5.3	3000	8.33	13.5	0.0805	0.457	0.085	0.457	0.0844	0.2	1.5
20	21.5	18	60	6×9.5×8.5	3000	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.35	2.3
23	23.5	22	60	7×11×9	3000	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.59	3.3
28	31	26	80	9×14×12	3000	28	46.8	0.524	2.7	0.524	2.7	0.562	1.1	4.8
34	33	29	80	9×14×12	3000	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.6	6.6

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-88) Static permissible moment*: static permissible moment value with 1 LM block

Model HSR-RM

Models HSR8RM and 10RM

	Outer	dimer	sions				LM I	olock o	dimens	ions				
Model No.	Height M	Width W	Length L	В	С	s×ℓ	L ₁	Т	к	N	E	Grea sing hole d	Grease nipple	Нз
HSR 8RM	11	16	24	10	10	M2×2.5	15	_	8.9	2.6	_	2.2	_	2.1
HSR 10RM	13	20	31	13	12	M2.6×2.5	20.1	-	10.8	3.5	-	2.5	1	2.2
HSR 12RM	20	27	45	15	15	M4×4.5	30.5	6	16.9	5.2	4	_	PB107	3.1

Model number coding

UU +670L HSR12

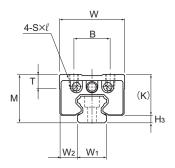
Type of LM block Model number

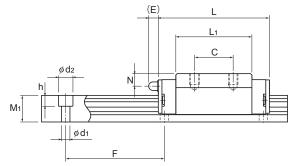
Contamination protection accessory symbol (*1)

Stainless steel LM block LM rail length (in mm)

Stainless steel LM rail

Symbol for No. of rails used on the same Symbol for LM rail plane (*4)


No. of LM blocks used on the same Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)


iointed use

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP)

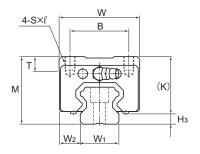
(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Model HSR12RM

Unit: mm

		LM	rail din	nensions		Basic rat	load ing			permis			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀		<u> </u>		l₃ }	M° C□	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks		kg	kg/m
8	4	6	20	2.4×4.2×2.3	(275)	1.08	2.16	0.00492	0.0319	0.00492	0.0319	0.00727	0.012	0.3
10	5	7	25	3.5×6×3.3	(470)	1.96	3.82	0.0123	0.0716	0.0123	0.0716	0.0162	0.025	0.45
12	7.5	11	40	3.5×6×4.5	(670)	4.7	8.53	0.0409	0.228	0.0409	0.228	0.0445	0.08	0.83


Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and envi-

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-88.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models HSR-R, HSR-RM, HSR-LR and HSR-LRM

	Oute	Outer dimensions					LM blo	ck dime	ensions	3			
Model No.	Height M	Width	Length L	В	С	s×l	Lı	Т	К	Z	Е	Grease nipple	Нз
1100 450	'*'	••	_		Ŭ	0			'`				113
HSR 15R HSR 15RM	28	34	56.6	26	26	M4×5	38.8	6	23.3	8.3	5.5	PB1021B	4.7
HSR 20R HSR 20RM	30	44	74	32	36	M5×6	50.8	8	26	5	12	B-M6F	4
HSR 20LR HSR 20LRM	30	44	90	32	50	M5×6	66.8	8	26	5	12	B-M6F	4
HSR 25R HSR 25RM	40	48	83.1	35	35	M6×8	59.5	9	34.5	10	12	B-M6F	5.5
HSR 25LR HSR 25LRM	40	48	102.2	35	50	M6×8	78.6	9	34.5	10	12	B-M6F	5.5
HSR 30R HSR 30RM	45	60	98	40	40	M8×10	70.4	9	38	10	12	B-M6F	7
HSR 30LR HSR 30LRM	45	60	120.6	40	60	M8×10	93	9	38	10	12	B-M6F	7
HSR 35R HSR 35RM	55	70	109.4	50	50	M8×12	80.4	11.7	47.5	15	12	B-M6F	7.5
HSR 35LR HSR 35LRM	55	70	134.8	50	72	M8×12	105.8	11.7	47.5	15	12	B-M6F	7.5
HSR 45R HSR 45LR	70	86	139 170.8	60	60 80	M10×17	98 129.8	15	60	20	16	B-PT1/8	10
HSR 55R HSR 55LR	80	100	163 201.1	75	75 95	M12×18	118 156.1	20.5	67	21	16	B-PT1/8	13
HSR 65R HSR 65LR	90	126	186 245.5	76	70 120	M16×20	147 206.5	23	76	19	16	B-PT1/8	14
HSR 85R HSR 85LR	110	156	245.6 303	100	80 140	M18×25	178.6 236	29	94	23	16	B-PT1/8	16
													·

Model number coding

HSR35 R 2 QZ SS C0 M +1400L P T M -II

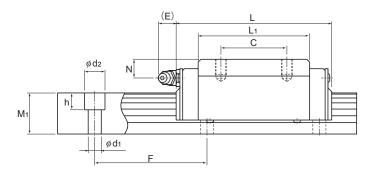
Model Ty number Li

Type of With C

With QZ Contamination protection accessory symbol (*1)

Stainless steel LM rail length LM block (in mm)

Stainless steel LM rail Symbol for LM rail jointed use Symbol for No. of rails used on the same plane (*4)


No. of LM blocks used on the same

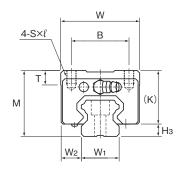
Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0) Accuracy symbol (*3)
Normal grade (No Symbol)/High accuracy grade (H)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

(*1) See contamination protection accessory on △1-352. (*2) See △1-90. (*3) See △1-95. (*4) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

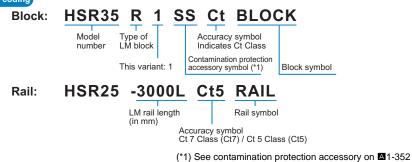
Those models equipped with QZ Lubricator cannot have a grease nipple.

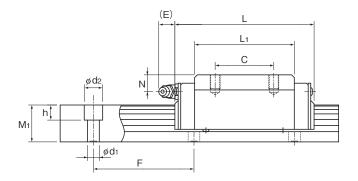
		LM	rail din	nensions		Basic rati		Static	permis	sible m	oment k	kN-m*	Ма	ISS
Width		Height	Pitch		Length*	О	Cº	N	1 _A			₫) א	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	15	60	4.5×7.5×5.3	3000 (1240)	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.18	1.5
20	12	18	60	6×9.5×8.5	3000 (1480)	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.25	2.3
20	12	18	60	6×9.5×8.5	3000 (1480)	21.3	31.8	0.323	1.66	0.323	1.66	0.27	0.35	2.3
23	12.5	22	60	7×11×9	3000 (2020)	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.54	3.3
23	12.5	22	60	7×11×9	3000 (2020)	27.2	45.9	0.529	2.74	0.529	2.74	0.459	0.67	3.3
28	16	26	80	9×14×12	3000 (2520)	28	46.8	0.524	2.7	0.524	2.7	0.562	0.9	4.8
28	16	26	80	9×14×12	3000 (2520)	37.3	62.5	0.889	4.37	0.889	4.37	0.751	1.1	4.8
34	18	29	80	9×14×12	3000 (2520)	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.5	6.6
34	18	29	80	9×14×12	3000 (2520)	50.2	81.5	1.32	6.35	1.32	6.35	1.2	2	6.6
45	20.5	38	105	14×20×17	3090	60 80.4	95.6 127	1.42 2.44	7.92 12.6	1.42 2.44	7.92 12.6	1.83 2.43	2.6 3.1	11
 53	23.5	44	120	16×23×20	3060	88.5 119	137 183	2.45 4.22	13.2 21.3	2.45 4.22	13.2 21.3	3.2 4.28	4.3 5.4	15.1
63	31.5	53	150	18×26×22	3000	141 192	215 286	4.8 8.72	23.5 40.5	4.8 8.72	23.5 40.5	5.82 7.7	7.3 9.3	22.5
85	35.5	65	180	24×35×28	3000	210 282	310 412	8.31 14.2	45.6 72.5	8.31 14.2	45.6 72.5	11 14.7	13 16	35.2


Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-88.)

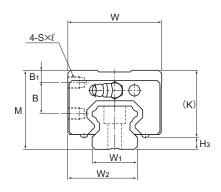
Static permissible moment*: 1 block: static permissible moment value with 1 LM block


Double blocks: static permissible moment value with 2 blocks closely contacting with each other


Model HSR-R Grade Ct

	Oute	r dimen	sions			L	M bloc	k dime	ensions	3			
Model No.	Height M	Width W	Length L	В	С	s×ℓ	L ₁	Т	К	N	ш	Grease nipple	Нз
HSR 15R (Ct)	28	34	56.6	26	26	M4×5	38.8	6	23.3	8.3	5.5	PB1021B	4.7
HSR 20R (Ct)	30	44	74	32	36	M5×6	50.8	8	26	5	12	B-M6F	4
HSR 25R (Ct)	40	48	83.1	35	35	M6×8	59.5	9	34.5	10	12	B-M6F	5.5
HSR 30R (Ct)	45	60	98	40	40	M8×10	70.4	9	38	10	12	B-M6F	7
HSR 35R (Ct)	55	70	109.4	50	50	M8×12	80.4	11.7	47.5	15	12	B-M6F	7.5

Model number coding



						Doois	load							
		LM	rail dir	nensions			ing	Static	permis	sible m	oment k	kN-m*	Ма	ISS
Width		Height	Pitch		Length *	С	C ₀		<u> </u>			(1) §	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	15	60	4.5×7.5×5.3	3000	8.33	13.5	0.0805	0.457	0.085	0.457	0.0844	0.18	1.5
20	12	18	60	6×9.5×8.5	3000	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.25	2.3
23	12.5	22	60	7×11×9	3000	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.54	3.3
28	16	26	80	9×14×12	3000	28	46.8	0.524	2.7	0.524	2.7	0.562	0.9	4.8
34	18	29	80	9×14×12	3000	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.5	6.6

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-88) Static permissible moment*: static permissible moment value with 1 LM block

Models HSR-YR and HSR-YRM

	Oute	r dimer	sions				LM blo	ck dim	ensions	3			
Model No.	Height M	Width	Length L	B ₁	В	С	s×ℓ	L ₁	К	N	E	Grease nipple	Н₃
HSR 15YR HSR 15YRM	28	33.5	56.6	4.3	11.5	18	M4×5	38.8	23.3	8.3	5.5	PB1021B	4.7
HSR 20YR HSR 20YRM	30	43.5	74	4	11.5	25	M5×6	50.8	26	5	12	B-M6F	4
HSR 25YR HSR 25YRM	40	47.5	83.1	6	16	30	M6×6	59.5	34.5	10	12	B-M6F	5.5
HSR 30YR HSR 30YRM	45	59.5	98	8	16	40	M6×9	70.4	38	10	12	B-M6F	7
HSR 35YR HSR 35YRM	55	69.5	109.4	8	23	43	M8×10	80.4	47.3	15	12	B-M6F	7.5
HSR 45YR	70	85.5	139	10	30	55	M10×14	98	60	20	16	B-PT1/8	10
HSR 55YR	80	99.5	163	12	32	70	M12×15	118	67	21	16	B-PT1/8	13
HSR 65YR	90	124.5	186	12	35	85	M16×22	147	76	19	16	B-PT1/8	14

Model number coding

HSR25 +1200L

Model number Type of LM block

Contamination protection accessory symbol (*1)

Stainless steel LM block

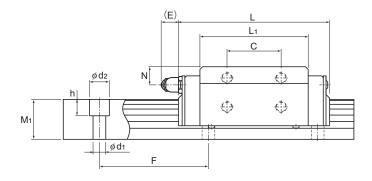
LM rail length (in mm)

Stainless steel LM rail Symbol for LM rail plane (*4)

Symbol for No. of rails used on the same

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)


Medium preload (C0)

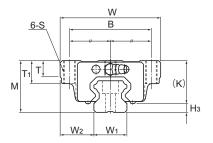
Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

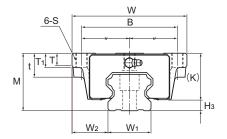
jointed use

(*1) See contamination protection accessory on △1-352. (*2) See △1-90. (*3) See △1-95. (*4) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

			LM	rail dir	mensions		Basic rat	load ing			permi: nent kN			Ма	ISS
	Width		Height	Pitch		Length*	С	C ₀	N (1 _A	1	18	J) ¤	LM block	LM rail
	W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks		kg	kg/m
	15	24	15	60	4.5×7.5×5.3	3000 (1240)	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.18	1.5
	20	31.5	18	60	6×9.5×8.5	3000 (1480)	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.25	2.3
	23	35	22	60	7×11×9	3000 (2020)	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.54	3.3
	28	43.5	26	80	9×14×12	3000 (2520)	28	46.8	0.524	2.7	0.524	2.7	0.562	0.9	4.8
	34	51.5	29	80	9×14×12	3000 (2520)	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.5	6.6
	45	65	38	105	14×20×17	3090	60	95.6	1.42	7.92	1.42	7.92	1.83	2.6	11
•	53	76	44	120	16×23×20	3060	88.5	137	2.45	13.2	2.45	13.2	3.2	4.3	15.1
	63	93	53	150	18×26×22	3000	141	215	4.8	23.5	4.8	23.5	5.82	7.3	22.5


Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.


The maximum length under "Length" indicates the standard maximum length of an LM rail. (See 11-88.)

Static permissible moment "1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models HSR-CA, HSR-CAM, HSR-HA and HSR-HAM

Models HSR20 to 35CA/HA/CAM/HAM

Models HSR45 to 85CA/HA

	Outer	dime	nsions					LM bl	ock dir	mensio	ons				
Model No.	Height	Width	Length											Grease nipple	
	М	W	L	В	С	S	L₁	t	Т	T ₁	K	N	Е	.,	Н₃
HSR 20CA HSR 20CAM	30	63	74	53	40	М6	50.8	1	9.5	10	26	5	12	B-M6F	4
HSR 20HA HSR 20HAM	30	63	90	53	40	M6	66.8	_	9.5	10	26	5	12	B-M6F	4
HSR 25CA HSR 25CAM	36	70	83.1	57	45	M8	59.5	_	11	16	30.5	6	12	B-M6F	5.5
HSR 25HA HSR 25HAM	36	70	102.2	57	45	M8	78.6	_	11	16	30.5	6	12	B-M6F	5.5
HSR 30CA HSR 30CAM	42	90	98	72	52	M10	70.4	_	9	18	35	7	12	B-M6F	7
HSR 30HA HSR 30HAM	42	90	120.6	72	52	M10	93	_	9	18	35	7	12	B-M6F	7
HSR 35CA HSR 35CAM	48	100	109.4	82	62	M10	80.4	_	12	21	40.5	8	12	B-M6F	7.5
HSR 35HA HSR 35HAM	48	100	134.8	82	62	M10	105.8	_	12	21	40.5	8	12	B-M6F	7.5
HSR 45CA HSR 45HA	60	120	139 170.8	100	80	M12	98 129.8	25	13	15	50	10	16	B-PT1/8	10
HSR 55CA HSR 55HA	70	140	163 201.1	116	95	M14	118 156.1	29	13.5	17	57	11	16	B-PT1/8	13
HSR 65CA HSR 65HA	90	170	186 245.5	142	110	M16	147 206.5	37	21.5	23	76	19	16	B-PT1/8	14
HSR 85CA HSR 85HA	110	215	245.6 303	185	140	M20	178.6 236	55	28	30	94	23	16	B-PT1/8	16

Model number coding

HSR25 HA 2 QZ KKHH C0 M +1300L P T M - ${ m II}$

Model number Type of LM block

No. of LM blocks

used on the same

With QZ Lubricator Contamination protection accessory symbol (*1)

Radial clearance symbol (*2)

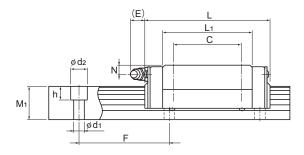
Normal (No symbol)

Medium preload (C0)

Light preload (C1)

ion Sta

Stainless steel LM rail length LM block (in mm)


Accuracy symbol (*3) Normal grade (No Symbol) High accuracy grade (H) Precision grade (P) Super precision grade (SP) Ultra precision grade (UP) Stainless steel LM rail

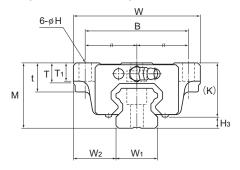
Symbol Symbol for No. of rails used on the same plane (*4)

(*1) See contamination protection accessory on △1-352. (*2) See △1-90. (*3) See △1-95. (*4) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

		LM	rail din	nensions		Basic rat	load ing			permis			Ма	ISS
Width		Height	Pitch		Length*	С	C₀	2	1 >			∰ ∑ ₩	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
20	21.5	18	60	6×9.5×8.5	3000 (1480)	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.35	2.3
20	21.5	18	60	6×9.5×8.5	3000 (1480)	21.3	31.8	0.323	1.66	0.323	1.66	0.27	0.47	2.3
23	23.5	22	60	7×11×9	3000 (2020)	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.59	3.3
23	23.5	22	60	7×11×9	3000 (2020)	27.2	45.9	0.529	2.74	0.529	2.74	0.459	0.75	3.3
28	31	26	80	9×14×12	3000 (2520)	28	46.8	0.524	2.7	0.524	2.7	0.562	1.1	4.8
28	31	26	80	9×14×12	3000 (2520)	37.3	62.5	0.889	4.37	0.889	4.37	0.751	1.3	4.8
34	33	29	80	9×14×12	3000 (2520)	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.6	6.6
34	33	29	80	9×14×12	3000 (2520)		81.5	1.32	6.35	1.32	6.35	1.2	2	6.6
45	37.5	38	105	14×20×17	3090	60 80.4	95.6 127	1.42 2.44	7.92 12.6	1.42 2.44	7.92 12.6	1.83 2.43	2.8 3.3	11
53	43.5	44	120	16×23×20	3060	88.5 119	137 183	2.45 4.22	13.2 21.3	2.45 4.22	13.2 21.3	3.2 4.28	4.5 5.7	15.1
63	53.5	53	150	18×26×22	3000	141 192	215 286	4.8 8.72	23.5 40.5	4.8 8.72	23.5 40.5	5.82 7.7	8.5 10.7	22.5
85	65	65	180	24×35×28	3000	210 282	310 412	8.31 14.2	45.6 72.5	8.31 14.2	45.6 72.5	11 14.7	17 23	35.2


Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

The maximum length under "Length" indicates the standard maximum length of an LM rail. (See 11-88.)

Static permissible moment "1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models HSR-CB, HSR-CBM, HSR-HB and HSR-HBM

		Outer nensio						LM b	olock d	imens	sions				
Model No.	Height M	Width W	Length L	В	С	Н	L ₁	t	Т	T 1	К	N	E	Grease nipple	Нз
HSR 20CB HSR 20CBM	30	63	74	53	40	6	50.8	10	9.5	10	26	5	12	B-M6F	4
HSR 20HB HSR 20HBM	30	63	90	53	40	6	66.8	10	9.5	10	26	5	12	B-M6F	4
HSR 25CB HSR 25CBM	36	70	83.1	57	45	7	59.5	16	11	10	30.5	6	12	B-M6F	5.5
HSR 25HB HSR 25HBM	36	70	102.2	57	45	7	78.6	16	11	10	30.5	6	12	B-M6F	5.5
HSR 30CB HSR 30CBM	42	90	98	72	52	9	70.4	18	9	10	35	7	12	B-M6F	7
HSR 30HB HSR 30HBM	42	90	120.6	72	52	9	93	18	9	10	35	7	12	B-M6F	7
HSR 35CB HSR 35CBM	48	100	109.4	82	62	9	80.4	21	12	13	40.5	8	12	B-M6F	7.5
HSR 35HB HSR 35HBM	48	100	134.8	82	62	9	105.8	21	12	13	40.5	8	12	B-M6F	7.5
HSR 45CB HSR 45HB	60	120	139 170.8	100	80	11	98 129.8	25	13	15	50	10	16	B-PT1/8	10
HSR 55CB HSR 55HB	70	140	163 201.1	116	95	14	118 156.1	29	13.5	17	57	11	16	B-PT1/8	13
HSR 65CB HSR 65HB	90	170	186 245.5	142	110	16	147 206.5	37	21.5	23	76	19	16	B-PT1/8	14
HSR 85CB HSR 85HB	110	215	245.6 303	185	140	18	178.6 236	55	28	30	94	23	16	B-PT1/8	16

Model number coding

HSR35 CB 2 QZ ZZHH C0 M +1400L P T M - ${ m I}$

Model Type of number LM block

With QZ Lubricator

No. of LM blocks

used on the same

Contamination protection accessory symbol (*1)

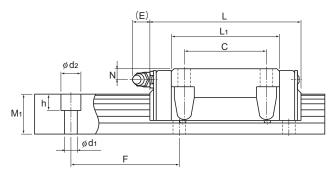
Radial clearance symbol (*2)

Normal (No symbol)

Medium preload (C0)

Light preload (C1)

Stainless steel LM rail length LM block (in mm)


Accuracy symbol (*3) Normal grade (No Symbol) High accuracy grade (H) Precision grade (P) Super precision grade (SP) Ultra precision grade (UP) Stainless steel LM rail Symbol

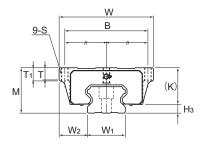
Symbol for No. of rails used on the same plane (*4)

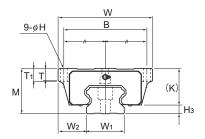
(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

		LM	rail din	nensions			load ing			permi			Ма	SS
Width		Height	Pitch		Length*	С	C₀	2	1 >			∰ ∑ ₩	LM block	LM rail
W ₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
20	21.5	18	60	6×9.5×8.5	3000 (1480)	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.35	2.3
20	21.5	18	60	6×9.5×8.5	3000 (1480)	21.3	31.8	0.323	1.66	0.323	1.66	0.27	0.47	2.3
23	23.5	22	60	7×11×9	3000 (2020)	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.59	3.3
23	23.5	22	60	7×11×9	3000 (2020)	27.2	45.9	0.529	2.74	0.529	2.74	0.459	0.75	3.3
28	31	26	80	9×14×12	3000 (2520)	28	46.8	0.524	2.7	0.524	2.7	0.562	1.1	4.8
28	31	26	80	9×14×12	3000 (2520)	37.3	62.5	0.889	4.37	0.889	4.37	0.751	1.3	4.8
34	33	29	80	9×14×12	3000 (2520)	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.6	6.6
34	33	29	80	9×14×12	3000 (2520)	50.2	81.5	1.32	6.35	1.32	6.35	1.2	2	6.6
45	37.5	38	105	14×20×17	3090	60 80.4	95.6 127	1.42 2.44	7.92 12.6	1.42 2.44	7.92 12.6	1.83 2.43	2.8 3.3	11
53	43.5	44	120	16×23×20	3060	88.5 119	137 183	2.45 4.22	13.2 21.3	2.45 4.22	13.2 21.3	3.2 4.28	4.5 5.7	15.1
63	53.5	53	150	18×26×22	3000	141 192	215 286	4.8 8.72	23.5 40.5	4.8 8.72	23.5 40.5	5.82 7.7	8.5 10.7	22.5
85	65	65	180	24×35×28	3000	210 282	310 412	8.31 14.2	45.6 72.5	8.31 14.2	45.6 72.5	11 14.7	17 23	35.2


Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.


The maximum length under "Length" indicates the standard maximum length of an LM rail. (See 11-88.)

Static permissible moment "1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models HSR-HA, HSR-HB and HSR-HR

Models HSR100 to 150HA

Models HSR100 to 150HB

		Outer nensio					LN	/l bloc	k dime	ension	s				
Model No.	Height M	Width W	Length L	В	О	н	s×ℓ	L ₁	Т	T 1	К	N	Е	Grease nipple	Н₃
HSR 100HA HSR 100HB HSR 100HR	120	250 250 200	334	220 220 130	200	_ 20 _	M18* - M18×27	261	32 32 33	35 35 —	100	23	16	B-PT1/4	20
HSR 120HA HSR 120HB HSR 120HR	130	290 290 220	365	250 250 146	210	_ 22 _	M20* - M20×30	287	34 34 33.7	38 38 —	110	26.5	16	B-PT1/4	20
HSR 150HA HSR 150HB HSR 150HR	145	350 350 266	396	300 300 180	230	_ 26 _	M24* - M24×35	314	36 36 33	40 40 —	123	29	16	B-PT1/4	22

Note) "*" indicates a through hole.

Model number coding

+2350L **HSR150** HR UU C1

Model number

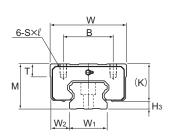
Type of LM block Contamination protection accessory symbol (*1)

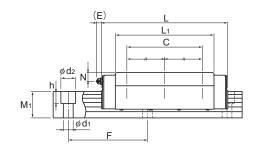
LM rail length (in mm)

Symbol for LM rail jointed use

Symbol for No. of rails used on the same plane (*4)

No. of LM blocks used on the same rail


Normal (No symbol) Light preload (C1) Medium preload (C0)


Radial clearance symbol (*2) Accuracy symbol (*3)

Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Models HSR100 to 150HR

Unit: mm

		LM	rail dir	nensions		Basic rat				perminent kN			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	2	∏ ✓ ₹			(1) §	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 Double blocks b		1 block	Double blocks	1 block	kg	kg/m
100	75 75 50	70	210	26×39×32	3000	351	506	19.4	98.2	19.4	98.2	22.4	32	49
114	88 88 53	75	230	33×48×43	3000	429	612	25.9	129	25.9	129	31.1	43	61
144	103 103 61	85	250	39×58×46	3000	518	728	33.6	167	33.6	167	45.2	62	87

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-88.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model HSR variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

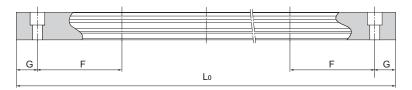
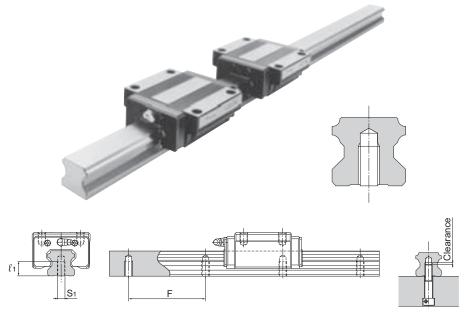


Table1 Standard Length and Maximum Length of the LM Rail for Model HSR

Unit: mm

Model No.	HSR 8	HSR 10	HSR 12	HSR 15	HSR 20	HSR 25	HSR 30	HSR 35	HSR 45	HSR 55	HSR 65	HSR 85	HSR 100	HSR 120	HSR 150
LM rail standard length (L₀)	35 55 75 95 115 135 155 195 215 225 225 275	45 70 95 120 145 170 195 220 245 270 320 345 370 395 470	70 110 150 130 230 270 310 350 390 430 470 550 630 670	160 220 280 340 400 460 520 580 640 700 940 1000 1120 1120 1140 1240 1480 1600	160 220 280 340 400 460 520 580 640 700 940 1000 1120 1120 1480 1480 1960 2080 2200	220 280 340 460 520 580 640 700 760 820 1060 1120 1180 1240 1300 1420 1480 1540 1720 1840 2080 2200 2320 2440	280 360 440 520 600 680 760 1080 1100 1240 1320 1400 1560 1640 1780 1880 1960 2200 2360 2260 2260 2840 3000	280 360 440 520 600 680 760 1080 1240 1320 1400 1560 1880 1960 2200 2360 2204 2202 2360 2840 3000	570 675 780 885 990 1095 1200 1515 1620 1725 1830 1935 2245 2250 2355 2670 2775 2780 2985 3090	780 900 1020 1140 1260 1380 1500 1740 1860 22100 2220 2340 2460 2700 2820 2700 3060	1270 1570 2020 2620	1530 1890 2250 2610	1340 1760 2180 2600	1470 1930 2390	1600 2100 2350
Standard pitch F	20	25	40	60	60	60	80	80	105	120	150	180	210	230	250
G	7.5	10	15	20	20	20	20	20	22.5	30	35	45	40	45	50
Max length	(275)	(470)	(670)	3000 (1240)	3000 (1480)	3000 (2020)	3000 (2520)	3000 (2520)	3090	3060	3000	3000	3000	3000	3000


Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK. Note3) The figures in the parentheses indicate the maximum lengths of stainless steel made models.

Note4) Ct7 and Ct5 grades are not applicable where the LM rail standard length appears in dimmed type for models HSR 15 to HSR 35.

Tapped-hole LM Rail Type of Model HSR

HSR model rails also include a type where the LM rail is tapped from the bottom. This type is useful when mounting from the bottom of the base and when increased contamination protection is desired.

- (1) Determine the bolt length so that a clearance of 2 to 5 mm is secured between the bolt end and the bottom of the tap (effective tap depth). (See figure above.)
- (2) A tapped-hole LM rail type is available also for model HSR-YR.
- (3) For standard pitches of the taps, see Table1 on 191-88.

Table2 Dimensions of the LM Rail Tap

Unit: mm

Model No.	S ₁	Effective tap depth ℓ_1
HSR 15	M5	8
HSR 20	M6	10
HSR 25	M6	12
HSR 30	M8	15
HSR 35	M8	17
HSR 45	M12	24
HSR 55	M14	24
HSR 65	M20	30

Model number coding

HSR30A2UU +1000LH P

Symbol for tapped-hole LM rail type

Note) Ct7 and Ct5 grades are not applicable.

Stopper

In miniature model HSR, the balls fall out if the LM block comes off the LM rail.

For this reason, they are delivered with a stopper fitted to prevent the LM block coming off the rail. If you remove the stopper when using the product, take care to ensure that overrun does not occur.

Table3 Model HSR stopper (C type) specification table

Unit: mm

Model No.	Α	В	С
8	13	6	10
10	16	6	11
12	20	7	15

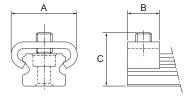
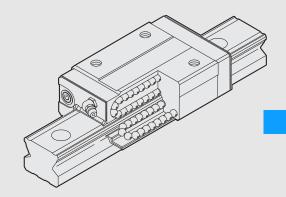
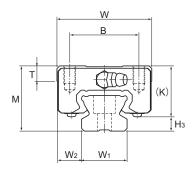



Fig.1 Model HSR stopper (C type)

SR

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Models SR-W, SR-WM, SR-V and SR-VM. Models SR-TB, SR-TBM, SR-SB and SR-SBM	■ 1-92 ■ 1-94
Standard Length and Maximum Length of the LM Rail	■ 1-96
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B 1-238
Dedicated Bellows DS for Model SR. Dedicated LM Cover TPS for Model SR	■ 1-254 ■ 1-261
Cap GC	B 1-262

□ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models SR-W, SR-WM, SR-V and SR-VM

	Oute	r dimen	sions			1	LM blo	ck dim	ension	S			
Model No.	Height M	Width	Length L	В	С	s×ℓ	L ₁	Т	К	N	E	Grease nipple	H ₃
SR 15W/WM SR 15V/VM	24	34	57 40.4	26	26 —	M4×7	39.5 22.9	5.7	19.5	6	5.5	PB1021B	4.5
SR 20W/WM SR 20V/VM	28	42	66.2 47.3	32	32 —	M5×8	46.7 27.8	7.2	22	6	12	B-M6F	6
SR 25W/WM SR 25V/VM	33	48	83 59.2	35	35	M6×9	59 35.2	7.7	26	7	12	B-M6F	7
SR 30W/WM SR 30V/VM	42	60	96.8 67.9	40	40 —	M8×12	69.3 40.4	8.5	32.5	8	12	B-M6F	9.5
SR 35W/WM SR 35V/VM	48	70	111 77.6	50	50 —	M8×12	79 45.7	12.5	36.5	8.5	12	B-M6F	11.5
SR 45W	60	86	126	60	60	M10×15	90.5	15	47.5	11.5	16	B-PT1/8	12.5
SR 55W	68	100	156	75	75	M12×20	117	16.7	54.5	12	16	B-PT1/8	13.5
SR 70T	85	126	194.6	90	90	M16×25	147.6	24.5	70	12	16	B-PT1/8	15
SR 85T	110	156	180	100	80	M18×30	130	25.5	91.5	27	12	A-PT1/8	18.5
SR 100T	120	178	200	120	100	M20×35	150	29.5	101	32	12	A-PT1/8	19
SR 120T	110	205	235	160	120	M20×35	180	24	95	14	13.5	B-PT1/4	15
SR 150T	135	250	280	200	160	M20×35	215	24	113	17	13.5	B-PT1/4	22

Model number coding

M +1240L **SR25** UU

Model Type of number LM block

Contamination protection accessory symbol (*1)

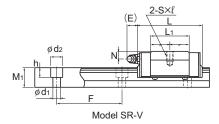
Stainless steel LM rail length LM block (in mm)

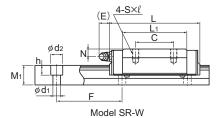
Stainless steel LM rail jointed use

Symbol for No. of rails used Applied to Symbol for LM rail on the same plane (*4)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)


Accuracy symbol (*3)


Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-95. (*4) See ▲1-35.

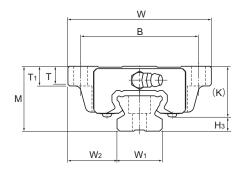
only 25

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

		LM	rail dir	nensions		Basic rat	load ing			permis nent kN			Ма	ss
Width		Height	Pitch		Length*	С	Co	2 \	 ✓ ₹			ر <u>ق</u> کھ	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	12.5	60	3.5×6×4.5	2500 (1240)	9.51 5.39			0.516 0.224				0.2 0.12	1.2
20	11	15.5	60	6×9.5×8.5	3000 (1480)				0.778 0.332			0.194 0.11	0.3 0.2	2.1
23	12.5	18	60	7×11×9	3000 (2020)				1.52 0.649			0.355 0.201	0.4 0.3	2.7
28	16	23	80	7×11×9	3000 (2520)	30 17.2		0.494 0.163		0.303 0.102			0.8 0.5	4.3
34	18	27.5	80	9×14×12	3000 (2520)	41.7 23.8		0.74 0.259		0.454 0.161		1.01 0.576	1.2 0.8	6.4
45	20.5	35.5	105	11×17.5×14	3000	55.3	101	1.1	5.96	0.679	3.69	1.77	2.2	11.3
48	26	38	120	14×20×17	3000	89.1	157	2.27	11.3	1.39	6.98	2.87	3.6	12.8
70	28	47	150	18×26×22	3000	156	266	2.54	13.2	2.18	11.3	4.14	7	22.8
85	35.5	65.5	180	18×26×22	3000	120	224	2.54	15.1	1.25	7.47	5.74	10.1	34.9
100	39	70.3	210	22×32×25	3000	148	283	3.95	20.9	1.95	10.3	8.55	14.1	46.4
114	45.5	65	230	26×39×30	3000	279	377	5.83	32.9	2.87	16.2	13.7	_	_
144	53	77	250	33×48×36	3000	411	537	9.98	55.8	4.92	27.5	24.3	_	_

Note1) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symból are therefore highly resistant to corrosion and environment.

Those model numbers including and greater than SR85T are semi-standard models. If desiring these models, contact

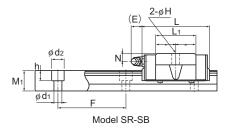

Models SR85T and SR100T are equipped with grease nipple on the side face of the LM block.

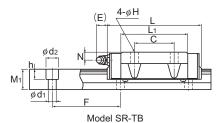
The maximum length under "Length∗" indicates the standard maximum length of an LM rail. (See ■1-96.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other Note2) The LM rail mounting hole of SR15 is drilled for M3 screws as standard (without Y indication). If you order the hole to be drilled for M4 screws (with Y indication), contact THK. When replacing this model with model SSR, pay attention to the dimension of the rail mounting hole.

Models SR-TB, SR-TBM, SR-SB and SR-SBM


	Oute	dimer	nsions				L	M bloc	k dime	ensions	6			
Model No.	Height M	Width	Length L	В	С	Н	L ₁	Т	T ₁	К	N	E	Grease nipple	H₃
SR 15TB/TBM SR 15SB/SBM	24	52	57 40.4	41	26 —	4.5	39.5 22.9	6.1	7	19.5	6	5.5	PB1021B	4.5
SR 20TB/TBM SR 20SB/SBM	28	59	66.2 47.3	49	32 —	5.5	46.7 27.8	8	9	22	6	12	B-M6F	6
SR 25TB/TBM SR 25SB/SBM	33	73	83 59.2	60	35 —	7	59 35.2	9.1	10	26	7	12	B-M6F	7
SR 30TB/TBM SR 30SB/SBM	42	90	96.8 67.9	72	40 —	9	69.3 40.4	8.7	10	32.5	8	12	B-M6F	9.5
SR 35TB/TBM SR 35SB/SBM	48	100	111 77.6	82	50 —	9	79 45.7	11.2	13	36.5	8.5	12	B-M6F	11.5
SR 45TB	60	120	126	100	60	11	90.5	12.8	15	47.5	11.5	16	B-PT1/8	12.5
SR 55TB	68	140	156	116	75	14	117	15.3	17	54.5	12	16	B-PT1/8	13.5


Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

Model number coding C1 +1200L Contamination Model Type of LM rail length Symbol for protection Symbol for LM rail number LM block (in mm) accessory No. of rails used Applied to jointed use symbol (*1) on the same plane (*4) only 25 No. of LM blocks Radial clearance symbol (*2) Accuracy symbol (*3) Normal (No symbol) used on the same Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Light preload (C1) Medium preload (C0) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

LM rail dimensions							Basic load rating		Static permissible moment kN-m*					Mass	
Width		Height	Pitch		Length*	С	C ₀	M _A		M _B		₩ (1) ₩	LM block	LM rail	
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks		kg	kg/m	
15	18.5	12.5	60	3.5×6×4.5	2500 (1240)	9.51 5.39		0.0925 0.0326					0.2 0.15	1.2	
20	19.5	15.5	60	6×9.5×8.5	3000 (1480)			0.146 0.053				0.194 0.11	0.4 0.3	2.1	
23	25	18	60	7×11×9	3000 (2020)			0.286 0.103	-	-			0.6 0.4	2.7	
28	31	23	80	7×11×9	3000 (2520)	30 17.2		0.494 0.163		0.303 0.102	-		1.1 0.8	4.3	
34	33	27.5	80	9×14×12	3000 (2520)		77.2 44.1	0.74 0.259		0.454 0.161	-	1.01 0.576	1.5 1	6.4	
45	37.5	35.5	105	11×17.5×14	3000	55.3	101	1.1	5.96	0.679	3.69	1.77	2.5	11.3	
48	46	38	120	14×20×17	3000	89.1	157	2.27	11.3	1.39	6.98	2.87	4.2	12.8	

Note1) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-96.) Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Note2) The LM rail mounting hole of SR15 is drilled for M3 screws as standard (without Y indication). If you order the hole to be drilled for M4 screws (with Y indication), contact THK. When replacing this model with model SSR, pay attention to the dimension of the rail mounting hole.

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SR variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

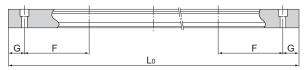
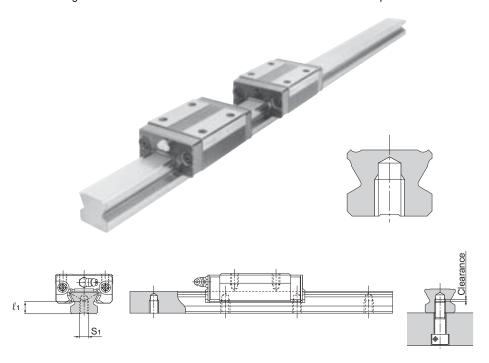


Table1 Standard Length and Maximum Length of the LM Rail for Model SR

Unit: mm

Model No.	SR 15	SR 20	SR 25	SR 30	SR 35	SR 45	SR 55	SR 70	SR 85	SR 100	SR 120	SR 150
	160	220	220	280	280	570	780	1270	1520	1550	1700	1600
	220	280	280	360	360	675	900	1570	2060	1970	2390	2100
	280	340	340	440	440	780	1020	2020	2600	2600		
	340	400	400	520	520	885	1140	2620				
	400	460	460	600	600	990	1260					
	460	520	520	680	680	1095	1380					
	520	580	580	760	760	1200	1500					
	580	640	640	840	840	1305	1740					
	640	700	700	920	920	1410	1860					
	700	760	760	1000	1000	1515	1980					
	760	820	820	1080	1080	1725	2100					
	820	940	940	1160	1160	1830	2220					
	940	1000	1000	1240	1240	1935	2340					
	1000	1060	1060	1320	1320	2040	2460					
	1060	1120	1120	1400	1400	2145	2580					
	1120	1180	1180	1480	1480	2250	2700					
	1180	1240	1240	1640	1640	2355	2820					
LM rail standard	1240	1300	1300	1720	1720	2460	2940					
length (L ₀)	1300	1360	1360	1800	1800	2565						
length (Lo)	1360	1420	1420	1880	1880	2670						
	1420	1480	1480	1960	1960	2775						
	1480	1540	1540	2040	2040	2880						
	1540	1600	1600	2120	2120	2985						
		1660	1660	2200	2200							
		1720	1720	2280	2280							
		1780	1780	2360	2360							
		1840	1840	2440	2440							
		1900	1900	2520	2520							
		1960	1960	2600	2600							
		2020	2020	2680	2680							
		2080	2080	2760	2760							
		2140	2140	2840	2840							
			2200	2920	2920							
			2260									
			2320									
			2380									
			2440									
Standard pitch F	60	60	60	80	80	105	120	150	180	210	230	250
G	20	20	20	20	20	22.5	30	35	40	40	45	50
Max length	2500 (1240)	3000 (1480)	3000 (2020)	3000 (2520)	3000 (2520)	3000	3000	3000	3000	3000	3000	3000


Note1) The maximum length varies with accuracy grades. Contact THK for details. Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

Note3) Those model numbers including and greater than SR85T are semi-standard models. If desiring these models, contact

Note4) The figures in the parentheses indicate the maximum lengths of stainless steel made models.

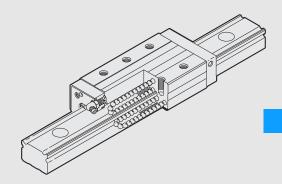
Tapped-hole LM Rail Type of Model SR

SR model rails also include a type where the LM rail is tapped from the bottom. This type is useful when mounting from the bottom of the base and when increased contamination protection is desired.

- A tapped-hole LM rail type is available only for high accuracy or lower grades.
- (2) Determine the bolt length so that a clearance of 2 to 5 mm is secured between the bolt end and the bottom of the tap (effective tap depth). (See figure above.)
- (3) For standard pitches of the taps, see Table1 on 191-96.

Table2 Dimensions of the LM Rail Tap

Unit: mm


Model No.	S ₁	Effective tap depth ℓ_1
SR 15	M5	7
SR 20	M6	9
SR 25	M6	10
SR 30	M8	14
SR 35	M8	16
SR 45	M12	20
SR 55	M14	22

Model number coding

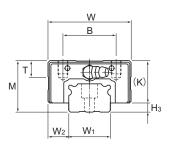
SR30 W2UU +1000LH

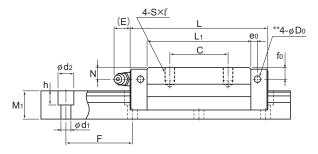
Symbol for tapped-hole LM rail type

NR/NRS

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table	
Models NR-R and NR-LR	B 1-100
Models NRS-R and NRS-LR	■ 1-102
Models NR-A and NR-LA	B 1-104
Models NRS-A and NRS-LA	B 1-106
Models NR-B and NR-LB	B 1-108
Models NRS-B and NRS-LB	B 1-110
Standard Length and Maximum Length	
of the LM Rail	B 1-112
Options	B 1-235
The LM Block Dimension (Dimension L)	
with LaCS and Seals Attached	B 1-238
Incremental Dimension with Grease Nipple	
(When LaCS is Attached)	B 1-244
Simplified Bellows JN Dedicated	
for Models NR/NRS	B 1-255
Cap C	B1-262
Cap GC	B1-263
LM Block Dimension (Dimension L)	1-203
with QZ Attached	D1 265
Lubrication Adapter	B1-265
End Piece EP	B 1-267
Ellu Fiece EF	■ 1-268


▲ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models NR-R and NR-LR

Model NR-R

		Outer nensic					I	LM blo	ock di	mens	ions					
Model No.	Height	Width	Length												Grease nipple	
	М	W	L	В	С	s×ℓ	L ₁	Т	К	N	fo	Е	e ₀	D₀		Н₃
NR 25XR NR 25XLR	31	50	82.8 102	32	35 50	M6×8	62.4 81.6	9.7	25.5	7	7	12	4	3.9	B-M6F	5.5
NR 30R NR 30LR	38	60	98 120.5	40	40 60	M8×10	70.9 93.4	9.7	31	7	7	12	5	3.9	B-M6F	7
NR 35R NR 35LR	44	70	109.5 135	50	50 72	M8×12	77.9 103.4	11.7	35	8	8	12	6	5.2	B-M6F	9
NR 45R NR 45LR	52	86	139 171	60	60 80	M10×17	105 137	14.7	40.5	10	8	16	7	5.2	B-PT1/8	11.5
NR 55R NR 55LR	63	100	162.8 200	65	75 95	M12×18	123.6 160.8	17.5	49	11	10	16	8	5.2	B-PT1/8	14
NR 65R NR 65LR	75	126	185.6 245.6	76	70 110	M16×20	143.6 203.6		60	16	15	16	9	8.2	B-PT1/8	15
NR 75R NR 75LR	83	145	218 274	95	80 130	M18×25	170.2 226.2	25.3	68	18	17	16	9	8.2	B-PT1/8	15
NR 85R NR 85LR	90	156	246.7 302.8	100	80 140	M18×25	194.9 251	27.3	73	20	20	16	10	8.2	B-PT1/8	17
NR 100R NR 100LR	105	200	286.2 326.2	130	150 200	M18×27	223.4 263.4	34.3	85	23	23	10	12	8.2	B-PT1/4	20

Model number coding

NR35 LR 2 QZ KKHH C0 +1240L P T Z -II

Light preload (C1)

Medium preload (C0)

Model number Type of LM block

With QZ Lubricator Contamination protection accessory symbol (*1)

LM rail length (in mm)

Symbol for LM rail jointed use

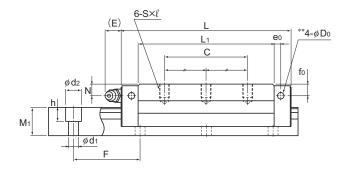
Symbol for No. of rails used on the same plane (*5)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol)

*2) With plate cover or steel tape (*4)

Accuracy symbol (*3)


Normal grade (No Symbol)/High accuracy grade (H)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

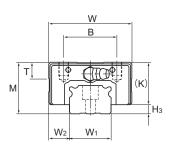
(*1) See contamination protection accessory on ▲1-352 (*2) See ▲1-89. (*3) See ▲1-95. (*4) Specify the plate cover or the steel tape. (*5) See ▲1-35.

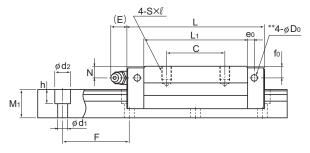
Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Model NR-LR

		LM	rail dir	mensions		Basic rat				permi: nent kN			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	2	1 _A	2		j) ¤	LM block	LM rail
W₁ 0 -0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block		1 block		1 block	kg	kg/m
25	12.5	17	40	6×9.5×8.5	2500	33 44	84.6 113	0.771 1.26		0.469 0.775		0.91 1.21	0.43 0.55	3.1
28	16	21	80	7×11×9	3000	48.7 64.9	122 162	1.26 2.18	6.63 10.6	0.778 1.33	4.05 6.47	1.47 1.95	0.74 1	4.3
34	18	24.5	80	9×14×12	3000	63.1 85.7	155 210	1.75 3.14	9.47 15.5	1.08 1.92	5.8 9.43	2.24 3.03	1.1 1.4	6.2
45	20.5	29	105	14×20×17	3090	96 126	231 303	3.37 5.93	17.7 28	2.07 3.59	10.8 16.9	4.45 5.82	2 2.8	9.8
53	23.5	36.5	120	16×23×20	3060	131 170	310 402	5.39 8.87	27.8 43.8	3.3 5.41	16.9 26.6	6.98 9.05	3.3 4.3	14.5
63	31.5	43	150	18×26×22	3000	189 260	436 600	8.76 16.8	44.7 79.9	5.39 10.1	27.3 48	11.6 15.9	6 8.7	20.3
75	35	44	150	22×32×26	3000	271 355	610 800	14.4 25.4	73.3 118	8.91 15.4	44.7 71.4	19.3 25.2	8.7 11.6	24.6
85	35.5	48	180	24×35×28	3000	336 435	751 972	20.3 34.7	102 160	12.4 21	62.6 96.2	26.8 34.6	12.3 15.8	30.5
100	50	57	210	26×39×32	2500	479 599	1040 1300		167 238	20.7 29.2	101 146	43.4 54.6	21.8 26.1	42.6


Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple.


The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-112.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models NRS-R and NRS-LR

Model NRS-R

	dir	Outer nension					ı	LM blo	ock di	mens	ions					
Model No.	Height M	Width W	Length L	В	С	s×l	L ₁	Т	К	N	fo	E	e ₀	D ₀	Grease nipple	Н₃
NRS 25XR NRS 25XLR	31	50	82.8 102	32	35 50	M6×8	62.4 81.6	9.7	25.5	7	7	12	4	3.9	B-M6F	5.5
NRS 30R NRS 30LR	38	60	98 120.5	40	40 60	M8×10	70.9 93.4	9.7	31	7	7	12	5	3.9	B-M6F	7
NRS 35R NRS 35LR	44	70	109.5 135	50	50 72	M8×12	77.9 103.4	11.7	35	8	8	12	6	5.2	B-M6F	9
NRS 45R NRS 45LR	52	86	139 171	60	60 80	M10×17	105 137	14.7	40.5	10	8	16	7	5.2	B-PT1/8	11.5
NRS 55R NRS 55LR	63	100	162.8 200	65	75 95	M12×18	123.6 160.8		49	11	10	16	8	5.2	B-PT1/8	14
NRS 65R NRS 65LR	75	126	185.6 245.6		70 110	M16×20	143.6 203.6		60	16	15	16	9	8.2	B-PT1/8	15
NRS 75R NRS 75LR	83	145	218 274	95	80 130	M18×25	170.2 226.2	25.3	68	18	17	16	9	8.2	B-PT1/8	15
NRS 85R NRS 85LR	90	156	246.7 302.8	100	80 140	M18×25	194.9 251	27.3	73	20	20	16	10	8.2	B-PT1/8	17
NRS 100R NRS 100LR	105	200	286.2 326.2		150 200	M18×27	223.4 263.4		85	23	23	10	12	8.2	B-PT1/4	20

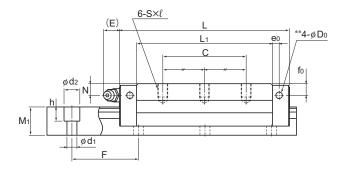
Model number coding

NRS45 LR 2 QZ ZZHH C0 +1200L P T Z -II

Model number Type of LM block With QZ Lubricator Contamination protection accessory symbol (*1) LM rail length (in mm)

Symbol for LM rail jointed use With plate cover or steel tape (*4) Symbol for No. of rails used on the same plane (*5)

No. of LM blocks used on the same rail


Radial clearance symbol (*2) Normal (No symbol)/Light preload (C1) Medium preload (C0) Accurac

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352 (*2) See ▲1-89. (*3) See ▲1-95. (*4) Specify the plate cover or the steel tape. (*5) See ▲1-35.

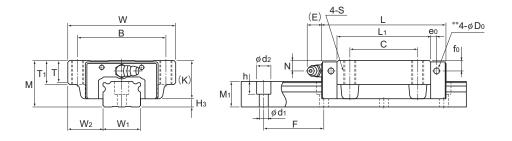
Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Model NRS-LR

Unit: mm

		LM	rail dir	mensions		Basic rat				permis			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	\	<u> </u>	1		چ (آث	LM block	LM rail
W ₁ 0 -0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	block	Double blocks	1 block	kg	kg/m
25	12.5	17	40	6×9.5×8.5	3000	25.9 34.5		0.568 0.926		0.568 0.926	2.84 4.6	0.633 0.846	0.43 0.55	3.1
28	16	21	80	7×11×9	3000	38.2 51	86.1 115	0.926 1.6	4.86 7.83	0.926 1.6	4.86 7.83	1.02 1.36	0.74 1	4.3
34	18	24.5	80	9×14×12	3000	49.5 67.2	109 148	1.28 2.29	6.92 11.3	1.28 2.29	6.92 11.3	1.54 2.09	1.1 1.4	6.2
45	20.5	29	105	14×20×17	3000	75.3 98.8	163 214	2.47 4.34	13 20.5	2.47 4.34	13 20.5	3.09 4.06	2 2.8	9.8
53	23.5	36.5	120	16×23×20	3000	103 133	220 284	3.97 6.49	20.5 32	3.97 6.49	20.5 32	4.86 6.28	3.3 4.3	14.5
63	31.5	43	150	18×26×22	3000	148 204	309 425	6.45 12.3	32.9 58.6	6.45 12.3	32.9 58.6	8.11 11.1	6 8.7	20.3
75	35	44	150	22×32×26	3000	212 278	431 566	10.6 18.6	53.8 87	10.6 18.6	53.8 87	13.4 17.6	8.7 11.6	24.6
85	35.5	48	180	24×35×28	3000	264 342	531 687	14.9 25.4	75.3 117	14.9 25.4	75.3 117	18.7 24.2	12.3 15.8	30.5
100	50	57	210	26×39×32	3000	376 470	737 920	25.1 34.6	123 174	25.1 34.6	123 174	30.4 38.1	21.8 26.1	42.6


Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-112.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models NR-A and NR-LA

Model NR-A

		Oute						LN	1 bloc	k dim	ensio	ns					
Model No.	Height M	Width	Length	В	С	s×ℓ	L ₁	Т	T ₁	К	N	fo	E	e _o	Do	Grease nipple	Н₃
NR 25XA NR 25XLA	31	72	82.8 102	59	45	M8×16	62.4 81.6	14.8	16	25.5	7	7	12	4	3.9	B-M6F	5.5
NR 30A NR 30LA	38	90	98 120.5	72	52	M10×18	70.9 93.4	16.8	18	31	7	7	12	5	3.9	B-M6F	7
NR 35A NR 35LA	44	100	109.5 135	82	62	M10×20	77.9 103.4	18.8	20	35	8	8	12	6	5.2	B-M6F	9
NR 45A NR 45LA	52	120	139 171	100	80	M12×22	105 137	20.5	22	40.5	10	8	16	7	5.2	B-PT1/8	11.5
NR 55A NR 55LA	63	140	162.8 200	116	95	M14×24	123.6 160.8	22.5	24	49	11	10	16	8	5.2	B-PT1/8	14
NR 65A NR 65LA	75	170	185.6 245.6		110	M16×28	143.6 203.6	26	28	60	16	15	16	9	8.2	B-PT1/8	15
NR 75A NR 75LA	83	195	218 274	165	130	M18×30	170.2 226.2	28	30	68	18	17	16	9	8.2	B-PT1/8	15
NR 85A NR 85LA	90	215	246.7 302.8			M20×34	251	32	34	73	20	20	16	10	8.2	B-PT1/8	17
NR 100A NR 100LA	105	260	286.2 326.2		150 200	M20×38	223.4 263.4	35	38	85	23	23	10	12	8.2	B-PT1/4	20

Model number coding

NR35 A 2 QZ KKHH C0 +1400L P T Z -II

Model number Type of LM block With QZ Lubricator Contamination protection accessory symbol (*1)

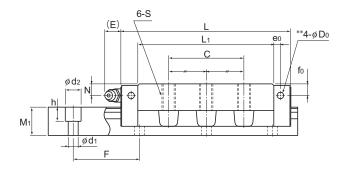
LM rail length (in mm)

Symbol for LM rail jointed use With plate cover or steel tape (*4) Symbol for No. of rails used on the same plane (*5)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)

Accuracy symbol (*3)


Normal grade (No Sýmbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on A1-352 (*2) See A1-89. (*3) See A1-95. (*4) Specify the plate cover or the steel tape. (*5) See A1-35.

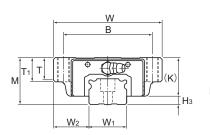
Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

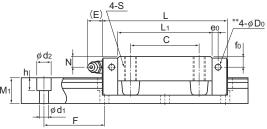
Those models equipped with QZ Lubricator cannot have a grease nipple.

Model NR-LA

Unit: mm

		LM	rail dir	nensions		Basic rat				permi: nent kN			Ма	ISS
Width		Height	Pitch		Length*	С	Co	2 \ [1 _A	2		M _c	LM block	LM rail
W ₁ 0 -0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
25	23.5	17	40	6×9.5×8.5	3000	33 44	84.6 113	0.771 1.26		0.469 0.775		0.91 1.21	0.58 0.77	3.1
28	31	21	80	7×11×9	3000	48.7 64.9	122 162	1.26 2.18	6.63 10.6	0.778 1.33	4.05 6.47	1.47 1.95	1.1 1.4	4.3
34	33	24.5	80	9×14×12	3000	63.1 85.7	155 210	1.75 3.14	9.47 15.5	1.08 1.92	5.8 9.43	2.24 3.03	1.5 1.9	6.2
45	37.5	29	105	14×20×17	3000	96 126	231 303	3.37 5.93	17.7 28	2.07 3.59	10.8 16.9	4.45 5.82	2.7 3.5	9.8
53	43.5	36.5	120	16×23×20	3000	131 170	310 402	5.39 8.87	27.8 43.8	3.3 5.41	16.9 26.6	6.98 9.05	4.4 5.7	14.5
63	53.5	43	150	18×26×22	3000	189 260	436 600	8.76 16.8	44.7 79.9	5.39 10.1	27.3 48	11.6 15.9	7.6 10.9	20.3
75	60	44	150	22×32×26	3000	271 355	610 800	14.4 25.4	73.3 118	8.91 15.4	44.7 71.4	19.3 25.2	11.3 15	24.6
85	65	48	180	24×35×28	3000	336 435	751 972	20.3 34.7	102 160	12.4 21	62.6 96.2	26.8 34.6	16.2 20.7	30.5
100	80	57	210	26×39×32	3000	479 599	1040 1300	34 47.3	167 238	20.7 29.2	101 146	43.4 54.6	26.7 31.2	42.6


Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple.


The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-112.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models NRS-A and NRS-LA

Model NRS-A

		Oute nensi						LN	1 bloc	k dim	ensio	ns					
Model No.	Height M	Width	Length	В	С	s×ℓ	L ₁	Т	T 1	К	N	fo	E	e ₀	Do	Grease nipple	H ₃
NRS 25XA NRS 25XLA	31	72	82.8 102	59	45	M8×16	62.4 81.6	14.8	16	25.5	7	7	12	4	3.9	B-M6F	5.5
NRS 30A NRS 30LA	38	90	98 120.5	72	52	M10×18	70.9 93.4	16.8	18	31	7	7	12	5	3.9	B-M6F	7
NRS 35A NRS 35LA	44	100	109.5 135	82	62	M10×20	77.9 103.4	18.8	20	35	8	8	12	6	5.2	B-M6F	9
NRS 45A NRS 45LA	52	120	139 171	100	80	M12×22	105 137	20.5	22	40.5	10	8	16	7	5.2	B-PT1/8	11.5
NRS 55A NRS 55LA	63	140	162.8 200	116	95	M14×24	123.6 160.8		24	49	11	10	16	8	5.2	B-PT1/8	14
NRS 65A NRS 65LA	75	170	185.6 245.6		110	M16×28	203.6	26	28	60	16	15	16	9	8.2	B-PT1/8	15
NRS 75A NRS 75LA	83	195	218 274	165	130	M18×30	170.2 226.2	28	30	68	18	17	16	9	8.2	B-PT1/8	15
NRS 85A NRS 85LA	90	215	246.7 302.8			M20×34	251	32	34	73	20	20	16	10	8.2	B-PT1/8	17
NRS 100A NRS 100LA	105	260	286.2 326.2	220	150 200	M20×38	223.4 263.4	35	38	85	23	23	10	12	8.2	B-PT1/4	20

Model number coding

QZ SSHH C0 +2040L NRS45

Model number

Type of LM block With QZ Lubricator

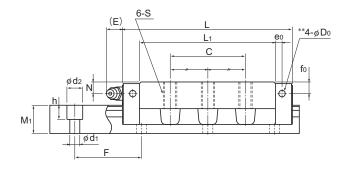
Contamination protection accessory symbol (*1)

LM rail length (in mm)

Symbol for LM rail jointed use With plate cover or steel tape (*4)

Symbol for No. of rails used on the same plane (*5)

No. of LM blocks used on the same rail


Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)

Accuracy symbol (*3)

Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

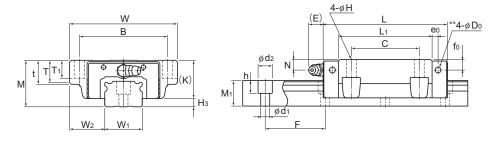
(*1) See contamination protection accessory on A1-352 (*2) See A1-89. (*3) See A1-95. (*4) Specify the plate cover or the steel tape. (*5) See A1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

Model NRS-LA

Unit: mm

		LM	rail dir	nensions		Basic rat	load ing			permi: nent kN			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	× (1 _A		18	M _°	LM block	LM rail
W ₁ 0 -0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
25	23.5	17	40	6×9.5×8.5	3000	25.9 34.5		0.568 0.926		0.568 0.926		0.633 0.846	0.58 0.77	3.1
28	31	21	80	7×11×9	3000	38.2 51	86.1 115	0.926 1.6	4.86 7.83	0.926 1.6	4.86 7.83	1.02 1.36	1.1 1.4	4.3
34	33	24.5	80	9×14×12	3000	49.5 67.2	109 148	1.28 2.29	6.92 11.3	1.28 2.29	6.92 11.3	1.54 2.09	1.5 1.9	6.2
45	37.5	29	105	14×20×17	3000	75.3 98.8	163 214	2.47 4.34	13 20.5	2.47 4.34	13 20.5	3.09 4.06	2.7 3.5	9.8
53	43.5	36.5	120	16×23×20	3000	103 133	220 284	3.97 6.49	20.5 32	3.97 6.49	20.5 32	4.86 6.28	4.4 5.7	14.5
63	53.5	43	150	18×26×22	3000	148 204	309 425	6.45 12.3	32.9 58.6	6.45 12.3	32.9 58.6	8.11 11.1	7.6 10.9	20.3
75	60	44	150	22×32×26	3000	212 278	431 566	10.6 18.6	53.8 87	10.6 18.6	53.8 87	13.4 17.6	11.3 15	24.6
85	65	48	180	24×35×28	3000	264 342	531 687	14.9 25.4	75.3 117	14.9 25.4	75.3 117	18.7 24.2	16.2 20.7	30.5
100	80	57	210	26×39×32	3000	376 470	737 920	25.1 34.6	123 174	25.1 34.6	123 174	30.4 38.1	26.7 31.2	42.6


Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-112.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models NR-B and NR-LB

Model NR-B

		Outer nension							LM I	olock	dime	ensio	าร					
Model No.	Height M	Width	Length	В	O	н	L ₁	t	Т	T ₁	К	Ν	fo	Е	e₀	D₀	Grease nipple	Н₃
NR 25XB NR 25XLB	31	72	82.8 102	59	45	7	62.4 81.6	16	14.8	12	25.5	7	7	12	4	3.9	B-M6F	5.5
NR 30B NR 30LB	38	90	98 120.5		52	9	70.9 93.4	18	16.8	14	31	7	7	12	5	3.9	B-M6F	7
NR 35B NR 35LB	44	100	109.5 135	82	62	9	77.9 103.4	20	18.8	16	35	8	8	12	6	5.2	B-M6F	9
NR 45B NR 45LB	52	120	139 171	100	80	11	105 137	22	20.5	20	40.5	10	8	16	7	5.2	B-PT1/8	11.5
NR 55B NR 55LB	63	140	162.8 200	116	95	14	123.6 160.8	24	22.5	22	49	11	10	16	8	5.2	B-PT1/8	14
NR 65B NR 65LB	75	170	185.6 245.6		110	16	143.6 203.6	28	26	25	60	16	15	16	9	8.2	B-PT1/8	15
NR 75B NR 75LB	83	195	218 274	165	130	18	170.2 226.2	30	28	26	68	18	17	16	9	8.2	B-PT1/8	15
NR 85B NR 85LB	90	215	246.7 302.8	185		18	194.9 251	34	32	28	73	20	20	16	10	8.2	B-PT1/8	17
NR 100B NR 100LB	105	260	286.2 326.2	220	150 200	20	223.4 263.4	38	35	32	85	23	23	10	12	8.2	B-PT1/4	20

Model number coding

NR35 B 2 QZ DDHH C0 +1080L P T Z - ${
m II}$

Model number Type of LM block With QZ Lubricator Contamination protection accessory symbol (*1)

LM rail length (in mm)

Symbol for LM rail jointed use With plate cover or steel tape (*4) Symbol for No. of rails used on the same plane (*5)

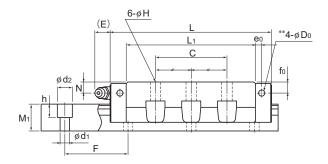
No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)

Light preload (C1)

Medium preload (C0)

Accuracy symbol (*3)


Normal grade (No Symbol)

Normal grade (No Symbol)/High accuracy grade (H)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

(*1) See contamination protection accessory on 🖾 1-352 (*2) See 🖾 1-89. (*3) See 🖾 1-95. (*4) Specify the plate cover or the steel tape. (*5) See 🖾 1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

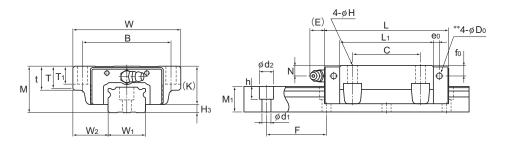
Those models equipped with QZ Lubricator cannot have a grease nipple.

Model NR-LB

		LM	rail dir	mensions			load ing			permis nent kN			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	2 \	1 _A		■ ✓ ■	ق (ق	LM block	LM rail
W₁ 0 -0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
25	23.5	17	40	6×9.5×8.5	3000	33 44	84.6 113	0.771 1.26		0.469 0.775	2.33 3.82	0.91 1.21	0.58 0.77	3.1
28	31	21	80	7×11×9	3000	48.7 64.9	122 162	1.26 2.18	6.63 10.6	0.778 1.33	4.05 6.47	1.47 1.95	1.1 1.4	4.3
34	33	24.5	80	9×14×12	3000	63.1 85.7	155 210	1.75 3.14	9.47 15.5	1.08 1.92	5.8 9.43	2.24 3.03	1.5 1.9	6.2
45	37.5	29	105	14×20×17	3000	96 126	231 303	3.37 5.93	17.7 28	2.07 3.59	10.8 16.9	4.45 5.82	2.7 3.5	9.8
53	43.5	36.5	120	16×23×20	3000	131 170	310 402	5.39 8.87	27.8 43.8	3.3 5.41	16.9 26.6	6.98 9.05	4.4 5.7	14.5
63	53.5	43	150	18×26×22	3000	189 260	436 600	8.76 16.8	44.7 79.9	5.39 10.1	27.3 48	11.6 15.9	7.6 10.9	20.3
 75	60	44	150	22×32×26	3000	271 355	610 800	14.4 25.4	73.3 118	8.91 15.4	44.7 71.4	19.3 25.2	11.3 15	24.6
85	65	48	180	24×35×28	3000	336 435	751 972	20.3 34.7	102 160	12.4 21	62.6 96.2	26.8 34.6	16.2 20.7	30.5
100	80	57	210	26×39×32	3000		1040 1300	34 47.3	167 238	20.7 29.2	101 146	43.4 54.6	26.7 31.2	42.6

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other


than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-112.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models NRS-B and NRS-LB

Model NRS-B

		Outer nension							LM	olock	dime	ensio	ns					
Model No.	Height M	Width	Length	В	С	н	L ₁	t	Т	T ₁	К	N	fo	E	e₀	D ₀	Grease nipple	H₃
NRS 25XB NRS 25XLB	31	72	82.8 102	59	45	7	62.4 81.6	16	14.8	12	25.5	7	7	12	4	3.9	B-M6F	5.5
NRS 30B NRS 30LB	38	90	98 120.5	72	52	9	70.9 93.4	18	16.8	14	31	7	7	12	5	3.9	B-M6F	7
NRS 35B NRS 35LB	44	100	109.5 135	82	62	9	77.9 103.4	20	18.8	16	35	8	8	12	6	5.2	B-M6F	9
NRS 45B NRS 45LB	52	120	139 171	100	80	11	105 137	22	20.5	20	40.5	10	8	16	7	5.2	B-PT1/8	11.5
NRS 55B NRS 55LB	63	140	162.8 200	116	95	14	123.6 160.8	24	22.5	22	49	11	10	16	8	5.2	B-PT1/8	14
NRS 65B NRS 65LB	75	170	185.6 245.6		110	16	143.6 203.6	28	26	25	60	16	15	16	9	8.2	B-PT1/8	15
NRS 75B NRS 75LB	83	195	218 274	165	130	18	170.2 226.2	30	28	26	68	18	17	16	9	8.2	B-PT1/8	15
NRS 85B NRS 85LB	90	215	246.7 302.8		140	18	194.9 251	34	32	28	73	20	20	16	10	8.2	B-PT1/8	17
NRS 100B NRS 100LB	105	260	286.2 326.2	220	150 200	20	223.4 263.4	38	35	32	85	23	23	10	12	8.2	B-PT1/4	20

Model number coding

NRS45 KKHH C0 +2040L QZ

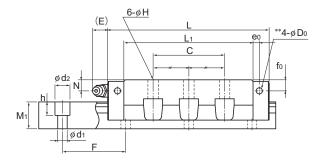
Model number Type of LM block

With QZ Lubricator Contamination protection accessory symbol (*1)

LM rail length (in mm)

Symbol for LM rail iointed use With plate cover or steel tape (*4)

Symbol for No. of rails used on the same plane (*5)


No. of LM blocks used on the same rail Radial clearance symbol (*2) Normal (No symbol) Light preload (C1)

Medium preload (C0)

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on A1-352 (*2) See A1-89. (*3) See A1-95. (*4) Specify the plate cover or the steel tape. (*5) See 🖪 1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

Model NRS-LB

		LM	rail dir	mensions			load ing			permi: nent kN			Ма	ss
Width		Height	Pitch		Length*	С	C ₀	2	1 _A	2	18	¤ (□	LM block	LM rail
W ₁ 0 -0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block		1 block			kg	kg/m
25	23.5	17	40	6×9.5×8.5	3000	25.9 34.5		0.568 0.926		0.568 0.926	2.84 4.6	0.633 0.846	0.58 0.77	3.1
28	31	21	80	7×11×9	3000	38.2 51	86.1 115	0.926 1.6	4.86 7.83	0.926 1.6	4.86 7.83	1.02 1.36	1.1 1.4	4.3
34	33	24.5	80	9×14×12	3000	49.5 67.2	109 148	1.28 2.29	6.92 11.3	1.28 2.29	6.92 11.3	1.54 2.09	1.5 1.9	6.2
45	37.5	29	105	14×20×17	3000	75.3 98.8	163 214	2.47 4.34	13 20.5	2.47 4.34	13 20.5	3.09 4.06	2.7 3.5	9.8
53	43.5	36.5	120	16×23×20	3000	103 133	220 284	3.97 6.49	20.5 32	3.97 6.49	20.5 32	4.86 6.28	4.4 5.7	14.5
63	53.5	43	150	18×26×22	3000	148 204	309 425	6.45 12.3	32.9 58.6	6.45 12.3	32.9 58.6	8.11 11.1	7.6 10.9	20.3
75	60	44	150	22×32×26	3000	212 278	431 566	10.6 18.6	53.8 87	10.6 18.6	53.8 87	13.4 17.6	11.3 15	24.6
85	65	48	180	24×35×28	3000	264 342	531 687	14.9 25.4	75.3 117	14.9 25.4	75.3 117	18.7 24.2	16.2 20.7	30.5
100	80	57	210	26×39×32	3000	376 470	737 920	25.1 34.6	123 174	25.1 34.6	123 174	30.4 38.1	26.7 31.2	42.6

Note) Pilot holes for side nipples** are not drilled through in order to prevent foreign material from entering the product.

THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes ** for purposes other

than mounting a grease nipple.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-112.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of models NR/NRS variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

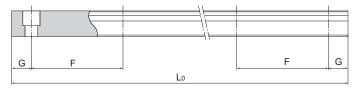
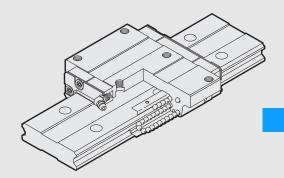



Table1 Standard Length and Maximum Length of the LM Rail for Models NR/NRS

Unit: mm

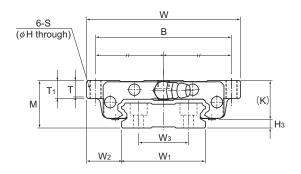
Model No.	NR/NRS25X	NR/NRS30	NR/NRS35	NR/NRS45	NR/NRS55	NR/NRS65	NR/NRS75	NR/NRS85	NR/NRS100
	230	280	280	570	780	1270	1280	1530	1340
	270	360	360	675	900	1570	1580	1890	1760
	350	440	440	780	1020	2020	2030	2250	2180
	390	520	520	885	1140	2620	2630	2610	2600
	470	600	600	990	1260				
	510	680	680	1095	1380				
	590	760	760	1200	1500				
	630	840	840	1305	1620				
	710	920	920	1410	1740				
	750	1000	1000	1515	1860				
	830	1080	1080	1620	1980				
	950	1160	1160	1725	2100				
	990	1240	1240	1830	2220				
	1070	1320	1320	1935	2340				
LM rail	1110	1400	1400	2040	2460				
standard	1190	1480	1480	2145	2580				
length (L ₀)	1230	1560	1560	2250	2700				
.og (=0)	1310	1640	1640	2355	2820				
	1350	1720	1720	2460	2940				
	1430	1800	1800	2565					
	1470	1880	1880	2670					
	1550	1960	1960	2775					
	1590	2040	2040	2880					
	1710	2200	2200	2985					
	1830	2360	2360						
	1950	2520	2520						
	2070	2680	2680						
	2190	2840	2840						
	2310	3000	3000						
	2430								
	2470								
Standard pitch	40	80	80	105	120	150	150	180	210
F	_								
G	15	20	20	22.5	30	35	40	45	40
Max length	3000	3000	3000	3000	3000	3000	3000	3000	3000

Note1) The maximum length varies with accuracy grades. Contact THK for details. Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

HRW

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Models HRW-CA and HRW-CAM Models HRW-CR, HRW-CRM and HRW-LRM	■ 1-114 ■ 1-116
Standard Length and Maximum Length of the LM Rail	■ 1-118
Options The LM Block Dimension (Dimension L) with LaCS and Seals Attached	■ 1-235
Dedicated Bellows JHRW for Model HRW Cap C Cap GC	B1-256 B1-262 B1-263

A Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features 🔼 1-177 Types and Features A1-178 Rated Loads in All Directions A1-179 Equivalent Load A1-179 Radial Clearance Standard A1-90 Accuracy Standards A1-95 Shoulder Height of the Mounting Base and the Corner Radius A1-312 Error Allowance in the Parallelism between Two Rails A1-316 Error Allowance in Vertical Level between Two Rails 41-319

^{*} Please see the separate "A Technical Descriptions of the Products".

Models HRW-CA and HRW-CAM

	dir	Outer nensio													
Model No.	Height M	Width W	Length L	В	С	н	S	L ₁	Т	T 1	К	N	Е	Grease nipple	H ₃
HRW 17CA HRW 17CAM	17	60	50.8	53	26	3.3	M4	33.6	5.5	6	14.5	4	2	PB107	2.5
HRW 21CA HRW 21CAM	21	68	58.8	60	29	4.4	M5	40	7.3	8	18	4.5	12	B-M6F	3
HRW 27CA HRW 27CAM	27	80	72.8	70	40	5.3	M6	51.8	9.5	10	24	6	12	B-M6F	3
HRW 35CA HRW 35CAM	35	120	106.6	107	60	6.8	M8	77.6	13	14	31	8	12	B-M6F	4
HRW 50CA	50	162	140.5	144	80	8.6	M10	103.5	16.5	18	46.6	14	16	B-PT1/8	3.4
HRW 60CA	60	200	158.9	180	80	10.5	M12	117.5	23.5	25	53.5	15	16	B-PT1/8	6.5

Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

Model number coding

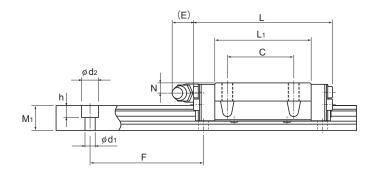
Model number Type of LM block

Contamination protection accessory symbol (*1)

Stainless steel LM rail length LM block

(in mm)

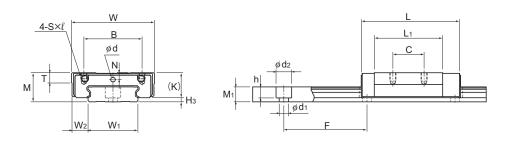
Symbol for LM rail jointed use


Stainless steel LM rail

No. of LM blocks used on the same rail Normal (No symbol)

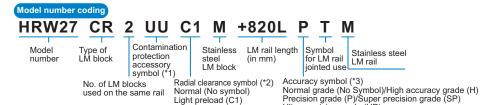
Light preload (C1) Medium preload (C0)

Normal (No symbol) (*2) Accuracy symbol (*3)
Normal (No symbol) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)


(*1) See contamination protection accessory on A1-352. (*2) See A1-90. (*3) See A1-95.

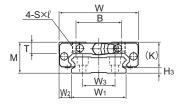
		l	₋M rai	l dime	ensions		Basic rat				permi: nent kN			Mass	
Width	Vidth Height Pitch Length*		С	Co	2	∏ ✓ ₹		T' =	() ×	LM block	LM rail				
W₁ ±0.05	W_2	Wз	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
33	13.5	18	9	40	4.5×7.5×5.3	1900 (800)	4.31	8.14	0.0417	0.244	0.0417	0.244	0.128	0.15	2.1
37	15.5	22	11	50	4.5×7.5×5.3	1900 (1000)	6.18	11.5	0.0701	0.398	0.0701	0.398	0.194	0.25	2.9
42	19	24	15	60	4.5×7.5×5.3	3000 (1200)	11.5	20.4	0.156	0.874	0.156	0.874	0.398	0.5	4.3
69	25.5	40	19	80	7×11×9	3000	27.2	45.9	0.529	2.89	0.529	2.89	1.49	1.4	9.9
90	36	60	24	80	9×14×12	3000	50.2	81.5	1.25	6.74	1.25	6.74	3.46	4	14.6
120	40	80	31	105	11×17.5×14	3000	63.8	102	1.76	12.3	1.76	12.3	5.76	5.7	27.8

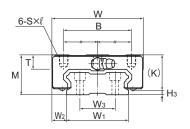
Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-118.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other


Models HRW-CR, HRW-CRM and HRW-LRM

Models HRW12 and 14LRM

	dir	Outer nensio												
Model No.	Height M	Width W	Length L	В	С	s×ℓ	L ₁	Т	К	N	Е	Greas- ing hole	Grease nipple	Н₃
HRW 12LRM	12	30	37	21	12	M3×3.5	27	4	10	2.8	_	2.2	_	2
HRW 14LRM	14	40	45.5	28	15	M3×4	32.9	5	12	3.3	_	2.2	_	2
HRW 17CR HRW 17CRM	17	50	50.8	29	15	M4×5	33.6	6	14.5	4	2	_	PB107	2.5
HRW 21CR HRW 21CRM	21	54	58.8	31	19	M5×6	40	8	18	4.5	12	_	B-M6F	3
HRW 27CR HRW 27CRM	27	62	72.8	46	32	M6×6	51.8	10	24	6	12	_	B-M6F	3
HRW 35CR HRW 35CRM	35	100	106.6	76	50	M8×8	77.6	14	31	8	12	_	B-M6F	4
HRW 50 CR	50	130	140.5	100	65	M10×15	103.5	18	46.6	14	16	_	B-PT1/8	3.4


Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.


Medium preload (C0)


(*1) See contamination protection accessory on A1-352. (*2) See A1-90. (*3) See A1-95.

Ultra precision grade (UP)

Models HRW17 and 21CR/CRM

Models HRW27 to 50CR/CRM

Unit: mm

		L	₋M rai	l dime	ensions	Basic load rating				Statio mon		Mass			
Width			Height	Pitch		Length*	O	Co	M _A		M _B		(1) §	LM block	LM rail
W₁ ±0.05	W_2	Wз	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
18	6	-	6.5	40	4.5×8×4.5	(1000)	3.29	7.16	0.0262	0.138	0.013	0.069	0.051	0.045	0.79
24	8	_	7.2	40	4.5×7.5×5.3	(1430)	5.38	11.4	0.0499	0.273	0.025	0.137	0.112	80.0	1.2
33	8.5	18	9	40	4.5×7.5×5.3	1900 (800)	4.31	8.14	0.0417	0.244	0.0417	0.244	0.128	0.12	2.1
37	8.5	22	11	50	4.5×7.5×5.3	1900 (1000)	6.18	11.5	0.0701	0.398	0.0701	0.398	0.194	0.19	2.9
42	10	24	15	60	4.5×7.5×5.3	3000 (1200)	11.5	20.4	0.156	0.874	0.156	0.874	0.398	0.37	4.3
69	15.5	40	19	80	7×11×9	3000	27.2	45.9	0.529	2.89	0.529	2.89	1.49	1.2	9.9
90	0 20 60 24 80 9×14×12 3000						50.2	81.5	1.25	6.74	1.25	6.74	3.46	3.2	14.6

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-118.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard and maximum lengths of the HRW model rail. If a rail length longer than the listed max length is required, rails may be jointed to meet the overall length. Contact THK for details. For special rail lengths, it is recommended to use a value corresponding to the G dimension from the table. As the G dimension increases, this portion becomes less stable and the accuracy performance is severely impacted.

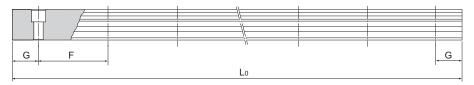


Table1 Standard Length and Maximum Length of the LM Rail for Model HRW

Unit: mm

Model No.	HRW 12	HRW 14	HRW 17	HRW 21	HRW 27	HRW 35	HRW 50	HRW 60
LM rail standard length (Lo)	70 110 150 190 230 270 310 390 470	70 110 150 190 230 270 310 390 470 550 670	110 190 310 470 550	130 230 380 480 580 780	160 280 340 460 640 820	280 440 760 1000 1240 1560	280 440 760 1000 1240 1640 2040	570 885 1200 1620 2040 2460
Standard pitch F	40	40	40	50	60	80	80	105
G	15	15	15	15	20	20	20	22.5
Max length	(1000)	(1430)	1900 (800)	1900 (1000)	3000 (1200)	3000	3000	3000

Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

Note3) The figures in the parentheses indicate the maximum lengths of stainless steel made models.

Stopper

In miniature model HRW, the balls fall out if the LM block comes off the LM rail.

For this reason, they are delivered with a stopper fitted to prevent the LM block coming off the rail. If you remove the stopper when using the product, take care to ensure that overrun does not occur.

Table2 Model HRW stopper (C type) specification table

Unit: mm

Model No.	Α	В	С
12	22	7	10.5
14	29	7.8	11.2

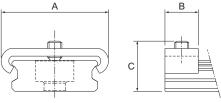
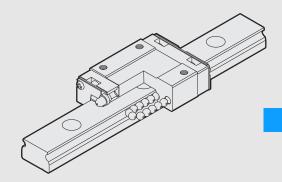
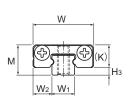



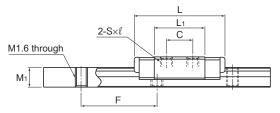
Fig.1 Model HRW stopper (C type)

RSR

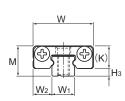
LM Guide

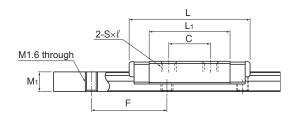
Product Specifications


Dimensional Drawing, Dimensional Table Models RSR-M, RSR-N and RSR-TN . Models RSR-M, RSR-KM,	-1 120
RSR-VM and RSR-N Model RSR-WM(WTM) and RSR-WN(WTN) . Model RSR-WV,	
RSR-WVM and RSR-WN	. B 1-126
Standard Length and Maximum Length of the LM Rail	
OptionsThe LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B1-238B1-262
LM Block Dimension (Dimension L) with QZ Attached	


▲ Technical Descriptions of the Products (Separate)

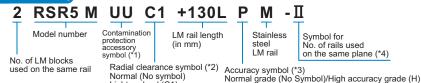
Technical Descriptions	
Structure and Features	A1-183
Types and Features	A1-184
Comparison of Model RSR-W	
with Other Model Numbers	A1-186
Rated Loads in All Directions	A1-187
Equivalent Load	A1-187
Service Life	A 1-76
Radial Clearance Standard	A1-90
Accuracy Standards	A1-101
Shoulder Height of the Mounting Base	
and the Corner Radius	A1-314
Error Allowance in the Parallelism	
between Two Rails	A1-316
Error Allowance in Vertical Level	
between Two Rails	A1-319
Accuracy of the Mounting Surface	A1-188
Flatness of the Mounting Surface	A1-317


^{*} Please see the separate "A Technical Descriptions of the Products".


Models RSR-M, RSR-N and RSR-TN

Model RSR3M

Model RSR3N

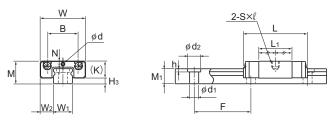

		Outer nensio					LM I	olock o	dimens	sions				
Model No.	Height M	Width W	Length	В	С	s×ℓ	L ₁	Т	К	Z	ш	Greas- ing hole d	Grease nipple	Нз
RSR 3M RSR 3N	4	8	12 16	_	3.5 5.5	M1.6×1.3 M2×1.3	6.7 10.7	-	3	-	_	-	-	1
RSR 5M RSR 5N RSR 5TN	6	12	16.9 20.1 20.1	8 - 8	_ 7 _	M2×1.5 M2.6×1.8 M2×1.5	8.8 12 12	ı	4.5	0.8	ı	0.8	Ι	1.5

Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.

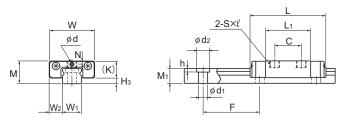
Models RSR3M and 3N do not have an oil hole. When lubricating them, apply a lubricant directly to the LM rail raceways. No contamination protection seal for RSR3M/3N.

To secure the LM rail of models RSR5M and 5N, use cross-recessed head screws for precision equipment (No. 0 pan head screw, class 1) M2.

Model number coding



Light preload (C1)


(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-101. (*4) See ▲1-35.

Precision grade (P)

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

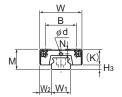
Models RSR5M/5TN

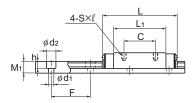
Model RSR5N

	L	.M rail	l dime	nsions		Basic rat	load ing			permi ment N			Ма	ISS
Width		Height	Pitch		Length*	С	Co	2 \	`	2 \		≚ ([}	LM block	LM rail
W ₁	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks		Double blocks		kg	kg/m
3 0 -0.02	2.5	2.6	10	_	200		-	0.293 0.726		0.293 0.726		0.45 0.73		0.055
5 0 -0.02	3.5	4	15	2.4×3.5×1	200	0.32 0.55 0.55	0.96		6.51 11.9 11.9	0.884 1.84 1.84	6.51 11.9 11.9	1.53 2.49 2.49	0.003 0.004 0.004	0.14

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 51-128.) Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

• Recommended tightening torque when mounting the LM rail/block

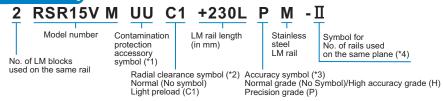

Table1 shows recommended bolt tightening torques when mounting the LM block and LM rail of models RSR3M/3N.


Table1 Recommended Tightening Torques of Mounting Bolts

Model No. of screw	Recommended tightening torque (N-m)
M1.6	0.09
M2	0.19

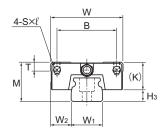
Note) Applicable to austenite stainless steel hexagonalsocket-head type bolts.

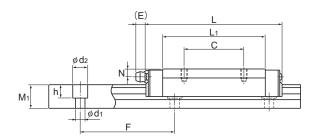
Models RSR-M, RSR-KM, RSR-VM and RSR-N



Models RSR7 to 12N/7M/9KM/12VM

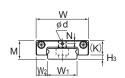
		Outer nension					LM I	olock (dimens	sions				
Model No.	Height	Width	Length									Greas- ing hole	Grease nipple	
	М	W	L	В	С	s×ℓ	L ₁	Т	К	N	Е	d	.,	Н₃
RSR 7M RSR 7N	8	17	23.4 33	12	8 13	M2×2.5	13.4 23	_	6.5	1.7	_	1.2	_	1.5
RSR 9KM RSR 9N	10	20	30.8 40.8	15	10 16	M3×3	19.8 29.8	-	7.8	2.4	_	1.5	-	2.2
RSR 12VM RSR 12N	13	27	35 47.7	20	15 20	M3×3.5	20.6 33.3	_	10	3	_	2	_	3
RSR 15VM RSR 15N	16	32	42.9 60.7	25	20 25	M3×4	25.7 43.5	ı	12	3.5	3.6 3.7	_	PB107	4
RSR 20VM RSR 20N	25	46	66.5 86.3	38	38	M4×6	45.2 65	5.7	17.5	5	6.4	_	A-M6F	7.5

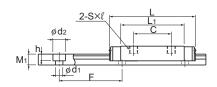

Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.


Model number coding

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-101. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

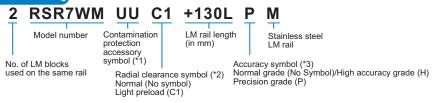

Models RSR15 and 20VM/N


Unit: mm

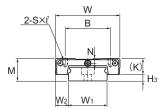
	L	M rai	l dime	nsions			load ing			permi ment N			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	2	1 _A		Λ _B	(1) §	LM block	LM rail
W ₁	W ₂	M ₁	F	d₁×d₂×h	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
7 0 -0.02	5	4.7	15	2.4×4.2×2.3	300	0.88 1.59	1.37 2.5	2.93 8.68	20.8 49.9	2.93 8.68	20.8 49.9	5 9.12	0.013 0.018	0.23
9 0 -0.02	5.5	5.5	20	3.5×6×3.3	1000	1.47 2.6	2.25 3.96	7.34 18.4	43.3 97	7.34 18.4	43.3 97	10.4 18.4	0.018 0.027	0.32
12 0 -0.025	7.5	7.5	25	3.5×6×4.5	1340	2.65 4.3	4.02 6.65	11.4 28.9	74.9 163	10.1 25.5	67.7 145	19.2 31.8	0.037 0.055	0.58
15 ⁰ _{-0.025}	8.5	9.5	40	3.5×6×4.5	1430	4.41 7.16	6.57 10.7	23.7 63.1	149 330	21.1 55.6	135 293	38.8 63	0.069 0.093	0.925
20 0 -0.03	13	15	60	6×9.5×8.5	1800	8.82 14.2	12.7 20.6	75.4 171	435 897	66.7 151	389 795	96.6 157	0.245 0.337	1.95

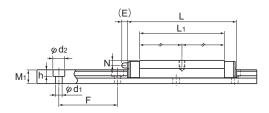
Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-128.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models RSR-WM(WTM) and RSR-WN(WTN)

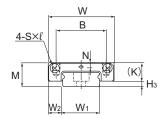


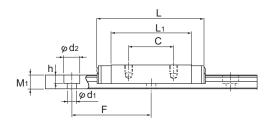
Models RSR3 to 7WM/WN


		Outer nension					LM b	olock o	dimens	sions				
Model No.	Height	Width	Length									Greas- ing hole	Grease nipple	
	М	W	L	В	С	S×ℓ	L₁	Т	K	N	Е	d		Н₃
RSR 3WM RSR 3WN	4.5	12	14.9 19.9	_	4.5 8	M2×1.7	8.5 13.3	_	3.5	0.8	_	0.8	_	1
RSR 5WM RSR 5WTM RSR 5WN RSR 5WTN	6.5	17	22.1 22.1 28.1 28.1	13 - 13	6.5 — 11 —	M3×2.3 M2.5×1.5 M3×2.3 M2.5×1.5	13.7 13.7 19.7 19.7	-	5	1.1	-	0.8	-	1.5
RSR 7WM RSR 7WTM RSR 7WN RSR 7WTN	9	25	31 31 40.9 40.9	19 - 19	12 8 18 17	M4×3.5 M3×3 M4×3.5 M3×3	20.4 20.4 30.3 30.3	ı	7	1.6	ı	1.2	_	2

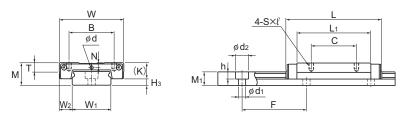

Note) The LM block, rail, and ball material are composed of stainless steel and are corrosion resistant to general environments. To secure the LM rail of models RSR3WM and 3WN, use cross-recessed head screws for precision equipment (No. 0 pan head screw, class 1) M2.

Model number coding




(*1) See contamination protection accessory on \$\textstyle{A}\$1-352. (*2) See \$\textstyle{A}\$1-90. (*3) See \$\textstyle{A}\$1-101.

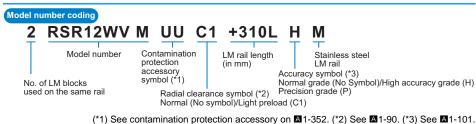
Models RSR5WTM/WTN

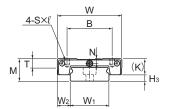


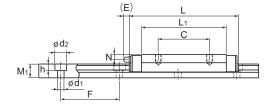
Models RSR7WTM/WTN

		LM	rail diı	mensi	ons		Basic rat	load ing			permi: nent N			Ма	ISS
Width			Height	Pitch		Length*	С	Co	2 (<u> </u>			≚ (þ	LM block	LM rail
W ₁	W_2	Wз	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
6 _0.02	3	_	2.6	15	2.4×4×1.5	100	0.25 0.39		0.668 1.57	4.44 9.06	0.668 1.57	4.44 9.06		0.002 0.003	0.12
10 0 -0.025	3.5	ı	4	20	3×5.5×3	200	0.51 0.51 0.75 0.75	0.96 1.4	1.97 1.97 4.06 4.06	13.1 13.1 23.5 23.5	1.97 1.97 4.06 4.06	13.1 13.1 23.5 23.5		0.007 0.007 0.01 0.01	0.28
14 _0.05	5.5	ĺ	5.2	30	3.5×6×3.2	400			7.02 7.02 14.7 14.7	40.7 40.7 77.6 77.6	7.02 7.02 14.7 14.7	40.7 40.7 77.6 77.6	15.4 22.9	0.021 0.021 0.026 0.026	0.51

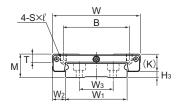
Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-128.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

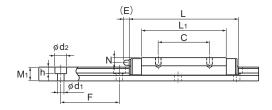

Models RSR-WV, RSR-WVM and RSR-WN




Models RSR9, 12WV/WVM/WN

		Outer nension					LM I	olock (dimens	sions				
Model No.	Height M	Width W	Length L	В	С	S×ℓ	L ₁	Т	К	N	Е	Greas- ing hole d	Grease nipple	Н₃
RSR 9WV * RSR 9WVM * RSR 9WN	12	30	39 39 50.7	21 21 23	12 12 24	M2.6×3 M2.6×3 M3×3	27 27 38.7	_	7.8	2	_	1.6	_	4.2
RSR 12WV * RSR 12WVM * RSR 12WN	14	40	44.5 44.5 59.5	28	15 15 28	M3×3.5	30.9 30.9 45.9	4.5	10	3	_	2	-	4
* RSR 14WVM	15	50	50	35	18	M4×4.5	34.3	6	11.5	3	4	_	PB107	3.5
RSR 15WV * RSR 15WVM * RSR 15WN	16	60	55.5 55.5 74.5	45	20 20 35	M4×4.5	38.9 38.9 57.9	5.6	12	3.5	3	_	PB107	4


Note) * The LM block, rail, and ball material are composed of stainless steel and are corrosion resistant to general environments.



Model RSR14WVM

Models RSR15WV/WVM/WN

		LM	rail dir	mensi	ons		Basic rat	load			permi			Ma	iss
Width			Height	Pitch		Length*	С	C ₀		M _A		I⊪ }	(1) §	LM block	LM rail
W ₁	W_2	Wз	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
18 _0.05	6	_	7.5	30	3.5×6×4.5	1000	2.45 2.45 3.52	3.92	16 16 31	92.9 92.9 161	16 16 31	92.9 92.9 161	36 36 49.4	0.035 0.035 0.051	1.08
24 _0.05	8	_	8.5	40	4.5×8×4.5	1430	4.02 4.02 5.96	6.08	24.5 24.5 53.9	138 138 274	21.7 21.7 47.3	123 123 242	59.5	0.075 0.075 0.101	1.5
30 _0.05	10	_	9	40	4.5×7.5×5.3	1800	6.01	9.08	43.2	233	38.2	208	110	0.096	2
42 _0.05	9	23	9.5	40	4.5×8×4.5	1800	6.66 6.66 9.91	9.8 9.8 14.9	50.3 50.3 110	278 278 555	44.4 44.4 97.3	248 248 490	168 168 255	0.17 0.17 0.21	3

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-128) Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks in close contact.

Standard Length and Maximum Length of the LM Rail

Table2 shows the standard and maximum lengths of the RSR model rail.

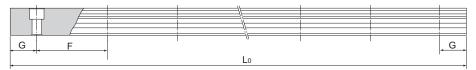


Table2 Standard Length and Maximum Length of the LM Rail for Model RSR/RSR-W

Unit: mm

Model No.	RSR 3	RSR 5	RSR 7	RSR 9	RSR 12	RSR 15	RSR 20	RSR 3W	RSR 5W	RSR 7W	RSR 9W	RSR 12W	RSR 14W	RSR 15W
LM rail standard length (L _o)	30 40 60 80 100	40 55 70 100 130 160	40 55 70 85 100 130	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 190 230 270 310 350 390 430 470 550 670 870	220 280 340 460 640 880 1000	40 55 70	50 70 90 110 130 150 170	50 80 110 140 170 200 260 290	50 80 110 140 170 200 260 290 320	70 110 150 190 230 270 310 390 470 550	110 150 190 230 270 310 430 550 670 790	110 150 190 230 270 310 430 550 670 790
Standard pitch F	10	15	15	20	25	40	60	15	20	30	30	40	40	40
G	5	5	5	7.5	10	15	20	5	5	10	10	15	15	15
Max length	200	200	300	1000	1340	1430	1800	100	200	400	1000	1430	1800	1800

Note1) The maximum length varies with accuracy grades. Contact THK for details. Note2) The LM rail mounting hole of model RSR3 is an M1.6 through hole.

Stopper

In model RSR/RSR-W, the balls fall out if the LM block comes off the LM rail.

For this reason, they are delivered with a stopper fitted to prevent the LM block coming off the rail. If you remove the stopper when using the product, take care to ensure that overrun does not occur.

Table3 Model RSR/RSR-W stopper (C type) specification table

Unit: mm

			Offic. Hilli
Model No.	А	В	С
7	11	5	7.7
9	13	6	9.5
12	16	7	12.5
15	19	7	14.5
20	25	7	20.0
7W	18	6	8.2
9W	23	7	11.5
12W	29	7	13.5
14W	33.8	7	13
15W	46	7	14.5

Note) Models RSR3M/N, 5M/N and 5W use O-rings, while model RSR3W uses silicon tubing.

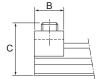
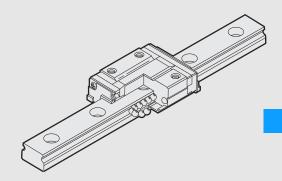
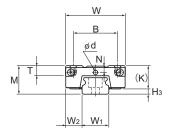



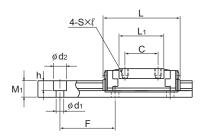
Fig.1 Model RSR/RSR-W stopper (C type)

RSR-Z

LM Guide

Product Specifications

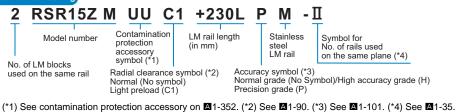

Dimensional Drawing, Dimensional Table Model RSR-ZM	B 1-130
Models RSR-WZM	■ 1-132
Standard Length and Maximum Length	
of the LM Rail	B 1-134
Stopper	B 1-134
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B 1-239


□ Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features A1-191 Types and Features A1-192 Rated Loads in All Directions A1-193 Equivalent Load A1-193 Radial Clearance Standard 1-90 Accuracy Standards A1-101 Shoulder Height of the Mounting Base and the Corner Radius A1-314 Error Allowance in the Parallelism between Two Rails A1-316 Error Allowance in Vertical Level between Two Rails A1-319 Accuracy of the Mounting Surface A1-194 Flatness of the Mounting Surface A1-317

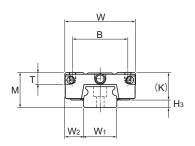
^{*} Please see the separate "A Technical Descriptions of the Products".

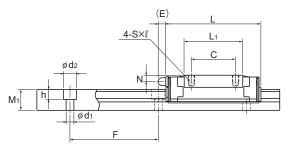
Model RSR-ZM



Models RSR7 to 12ZM

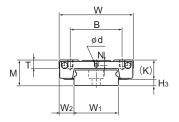
		Outer nension		LM block dimensions										
Model No.	Height M	Width	Length	В	С	s×ℓ	L ₁	Т	К	N	Е	Greas- ing hole d	Grease nipple	H₃
RSR 7ZM	8	17	23.4	12	8	M2×2.5	13.2	3.4	6.5	1.6	_	1.5	_	1.5
RSR 9ZM	10	20	30.8	15	10	M3×2.7	19.4	4.6	7.8	2.4	_	1.6	_	2.2
RSR 12ZM	13	27	35	20	15	M3×3.2	20.4	4.5	10.6	3.1	-	2	1	2.4
RSR 15ZM	16	32	43	25	20	M3×3.5	26.5	5.5	12.6	2.9	3.6	-	PB107	3.4

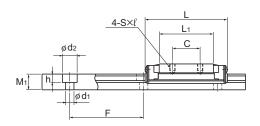

Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.


Model number coding

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

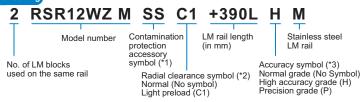

Model RSR15ZM


Unit: mm

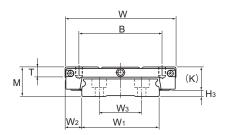
	L	.M rai	l dime	nsions						permi: nent N			Mass	
Width		Height	Pitch		Length*	С	C _o	<u> </u>	7	<u> </u>		ĕ ([j]	LM block	LM rail
W ₁	W_2	M ₁	F	d₁×d₂×h	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
7 ⁰ _{-0.02}	5	4.7	15	2.4×4.2×2.3	300	0.88	1.37	2.93	20.7	2.93	20.7	5	0.008	0.23
9 0 -0.02	5.5	5.5	20	3.5×6×3.3	1000	1.47	2.25	7.34	43	7.34	43	10.4	0.014	0.32
12 0 -0.025	7.5	7.5	25	3.5×6×4.5	1340	2.65	4.02	11.4	74.9	10.1	67.7	19.2	0.028	0.58
15 ⁰ -0.025	8.5	9.5	40	3.5×6×4.5	1430	4.41	6.57	23.7	149	21.1	135	38.8	0.05	0.925

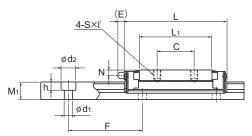
Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-134.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Model RSR-WZM



Models RSR7 to 12WZM


		Outer nension			LM block dimensions									
Model No.	Height M	Width	Length	В	С	s×ℓ	L ₁	Т	К	N	Е	Greas- ing hole d	Grease nipple	Н₃
RSR 7WZM	9	25	31.5	19	10	M3×2.5	19.7	3.4	7	1.8	_	1.6	_	2
RSR 9WZM	12	30	39	21	12	M3×2.8	27	3.9	9.1	2.3	_	1.6	_	2.9
RSR 12WZM	14	40	44.5	28	15	M3×3.6	29.3	4.5	10.6	3	_	2	_	3.4
RSR 15WZM	16	60	55.5	45	20	M4×4.5	39.3	5.4	12.6	3	3.6	_	PB107	3.4


Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.

Model number coding

(*1) See contamination protection accessory on △1-352. (*2) See △1-90. (*3) See △1-101.

Model RSR15WZM

Unit: mm

		LM	rail dii	mensi	ons		Basic rat	load ing			permi: nent N			Ма	ISS
Width			Height	Pitch		Length*	С	C ₀	2 4 1	1 _A	2 \		≚ (]	LM block	LM rail
W ₁	W_2	Wз	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
14 0 -0.05	5.5	_	5.2	30	3.5×6×3.2	400	1.37	2.16	6.54	42.1	6.54	42.1	15.4	0.018	0.51
18 0 -0.05	6	_	7.5	30	3.5×6×4.5	1000	2.45	3.92	16	92.9	16	92.9	36	0.03	1.08
24 0 -0.05	8	_	8.5	40	4.5×8×4.5	1430	4.02	6.08	24.5	138	21.7	123	59.5	0.06	1.5
42 0 -0.05	9	23	9.5	40	4.5×8×4.5	1800	6.66	9.8	50.3	278	44.4	248	168	0.135	3

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-134.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard and maximum lengths of the RSR Z/WZ model rail.

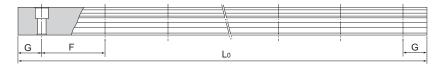


Table1 Standard Length and Maximum Length of the LM Rail for Model RSR-Z/WZ

Unit: mm

Model No.	RSR 7Z	RSR 9Z	RSR 12Z	RSR 15Z	RSR 7WZ	RSR 9WZ	RSR 12WZ	RSR 15WZ
LM rail standard length (L ₀)	40 55 70 85 100 130	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 190 230 270 310 350 390 430 470 550 670 870	50 80 110 140 170 200 260 290	50 80 110 140 170 200 260 290 320	70 110 150 190 230 270 310 390 470 550	110 150 190 230 270 310 430 550 670 790
Standard pitch F	15	20	25	40	30	30	40	40
G	5	7.5	10	15	10	10	15	15
Max length	300	1000	1340	1430	400	1000	1430	1800

Note1) The maximum length varies with accuracy grades. Contact THK for details. Note2) The LM rails of these models are all made of stainless steel.

Stopper

In models RSR-Z/RSR-WZ, the balls fall out if the LM block comes off the LM rail.

For this reason, they are delivered with a stopper fitted to prevent the LM block coming off the rail. If you remove the stopper when using the product, take care to ensure that overrun does not occur.

Table2 Model RSR-Z/RSR-WZ stopper (C type) specification

Unit: mm

Model No.	Α	В	С
7	11	5	7.7
9	13	6	9.5
12	16	7	12.5
15	19	7	14.5
7W	18	6	8.2
9W	23	7	11.5
12W	29	7	13.5
15W	46	7	14.5

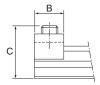
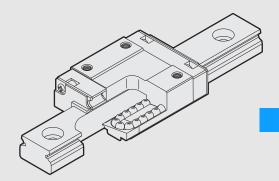
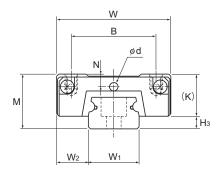



Fig.1 Model RSR-Z/RSR-WZ stopper (C type)

RSH

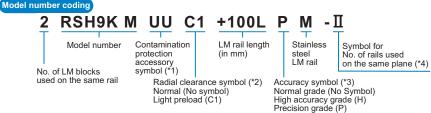
LM Guide

Product Specifications

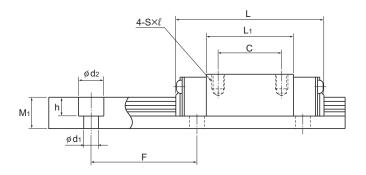

Dimensional Drawing, Dimensional Table Models RSH-M, RSH-KM and RSH-VM	■ 1-136
Standard Length and Maximum Length of the LM Rail	■ 1-138
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	■1-239 ■1-262

□ Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features A1-197 Types and Features A1-197 Rated Loads in All Directions A1-198 Equivalent Load A1-198 Radial Clearance Standard 1-90 Accuracy Standards A1-101 Shoulder Height of the Mounting Base and the Corner Radius A1-314 Error Allowance in the Parallelism between Two Rails A1-316 Error Allowance in Vertical Level between Two Rails A1-319 Accuracy of the Mounting Surface A1-199 Flatness of the Mounting Surface A1-317


^{*} Please see the separate "A Technical Descriptions of the Products".

Models RSH-M, RSH-KM and RSH-VM


	Oute	er dimen	sions								
Model No.	Height	Width	Length							Greas- ing hole	
	М	W	L	В	С	s×ℓ	L ₁	К	N	d	Нз
RSH 7M	8	17	23.4	12	8	M2×2.5	13.4	6.5	1.7	1.2	1.5
RSH 9KM	10	20	30.8	15	10	M3×3	19.8	7.8	2.4	1.5	2.2
RSH 12VM	13	27	35	20	15	M3×3.5	20.6	10	3	2	3

Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-101. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Unit: mm

	L	M rail	dime	nsions	Basic load rating				Statio		Ма	ISS		
Width		Height	Pitch		Length*	С	Cº	2	 			(1) §	LM block	LM rail
W ₁	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
7 ⁰ _{-0.02}	5	4.7	15	2.4×4.2×2.3	300	0.88	1.37	2.93	20.8	2.93	20.8	5	0.01	0.23
9 0 -0.02	5.5	5.5	20	3.5×6×3.3	1000	1.47	2.25	7.34	43.3	7.34	43.3	10.4	0.018	0.32
12 ⁰ -0.025	7.5	7.5	25	3.5×6×4.5	1340	2.65	4.02	11.4	74.9	10.1	67.7	19.2	0.037	0.58

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-138.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model RSH variations.

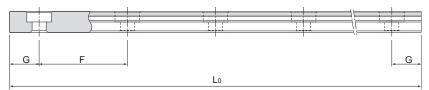
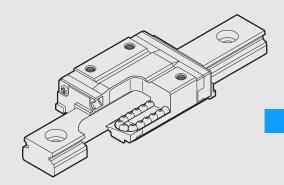



Table1 Standard Length and Maximum Length of the LM Rail for Model RSH

Unit: mm

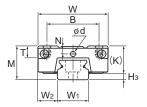
Model No.	RSH 7	RSH 9	RSH 12
LM rail standard length (L₀)	40 55 70 85 100 130	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570
Standard pitch F	15	20	25
G	5	7.5	10
Max length	300	1000	1340

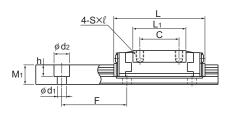
Note) The maximum length varies with accuracy grades. Contact THK for details.

RSH-Z

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Model RSH-ZM Model RSH-WZM	B1-140 B1-142
Standard Length and Maximum Length of the LM Rail	B 1-144
OptionsThe LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B 1-239


□ Technical Descriptions of the Products (Separate)

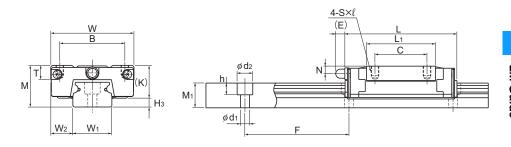
Technical Descriptions Structure and Features A1-201 Types and Features A1-202 Rated Loads in All Directions A1-203 Equivalent Load A1-203 Radial Clearance Standard 1-90 Accuracy Standards A1-101 Shoulder Height of the Mounting Base and the Corner Radius 🔼 1-314 Error Allowance in the Parallelism between Two Rails A1-316 Error Allowance in Vertical Level between Two Rails A1-319 Accuracy of the Mounting Surface A1-204 Flatness of the Mounting Surface A1-317

^{*} Please see the separate "A Technical Descriptions of the Products".

Model RSH-ZM

Models RSH7 to 12ZM

		Outer nension					LM b	olock (dimens	sions				
Model No.	Height M	Width	Length L	В	С	s×ℓ	L ₁	Т	К	N	E	Greas- ing hole	Grease nipple	H₃
RSH 7ZM	8	17	23.4	12	8	M2×2.5	13.2	3.4	6.5	1.6	_	1.5	-	1.5
RSH 9ZM	10	20	30.8	15	10	M3×2.8	19.4	4.6	7.8	2.4	_	1.6	-	2.2
RSH 12ZM	13	27	35	20	15	M3×3.2	20.4	4.5	10.6	3.1	_	2		2.4
RSH 15ZM	16	32	43	25	20	M3×3.5	26.5	5.5	12.6	2.9	3.6	_	PB107	3.4


Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.

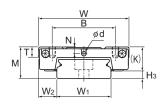
Model number coding

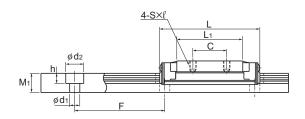
RSH15Z M UU +230L Contamination Model number LM rail length Stainless Symbol for protection (in mm) steel No. of rails used accessory symbol (*1) LM rail on the same plane (*4) No. of LM blocks Radial clearance symbol (*2) used on the same rail Accuracy symbol (*3) Normal (No symbol) Normal grade (No Symbol) Light preload (C1) High accuracy grade (H) Precision grade (P)

(*1) See contamination protection accessory on 🖾 1-352. (*2) See 🖾 1-90. (*3) See 🖾 1-101. (*4) See 🖾 1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Model RSH15ZM

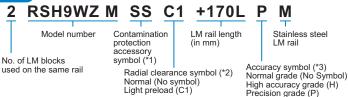

Unit: mm


	L	M rail	dimer	nsions		Basic load rating			Statio		Mass			
Width		Height	Pitch		Length*	С	C ₀	2	1 _A	2	₽ }	€ (<u></u>]	LM block	LM rail
W ₁	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
7 ⁰ _{-0.02}	5	4.7	15	2.4×4.2×2.3	300	0.88	1.37	2.93	20.7	2.93	20.7	5	0.008	0.23
9 0 -0.02	5.5	5.5	20	3.5×6×3.3	1000	1.47	2.25	7.34	43	7.34	43	10.4	0.014	0.32
12 ⁰ -0.025	7.5	7.5	25	3.5×6×4.5	1340	2.65	4.02	11.4	74.9	10.1	67.7	19.2	0.028	0.58
15 ⁰ _{-0.025}	8.5	9.5	40	3.5×6×4.5	1430	4.41	6.57	23.7	149	21.1	135	38.8	0.05	0.925

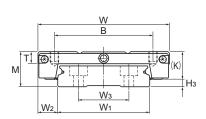
Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-144.) Static permissible moment*: 1 block; static permissible moment value with 1 LM block

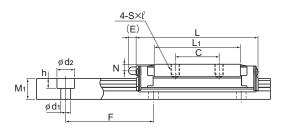
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Model RSH-WZM



Models RSH7 to 12WZM


		Outer					LM I	olock o	dimens	sions				
Model No.	Height M	Width W	Length L	В	O	s×ℓ	L ₁	Т	К	Z	ш	Greas- ing hole d	Grease nipple	Н₃
RSH 7WZM	9	25	31.5	19	10	M3×2.5	19.7	3.4	7	1.8	-	1.5	1	2
RSH 9WZM	12	30	39	21	12	M3×2.8	27	3.9	9.1	2.3	_	1.6	_	2.9
RSH 12WZM	14	40	44.5	28	15	M3×3.6	29.3	4.5	10.6	3	-	2	1	3.4
RSH 15WZM	16	60	55.5	45	20	M4×4.5	39.3	5.4	12.6	3	3.6	_	PB107	3.4


Note) Since stainless steel is used in the LM block, LM rail and balls, these models are highly resistant to corrosion and environment.

Model number coding

(*1) See contamination protection accessory on A1-352. (*2) See A1-90. (*3) See A1-101.

Model RSH15WZM

Unit: mm

		LMı	rail din	nensio	ons		Basic load rating			Statio	Mass				
Width			Height	Pitch		Length*	С	C ₀	2	1 _A	2		ĕ (□	LM block	LM rail
W ₁	W_2	W ₃	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks		Double blocks	1 block	kg	kg/m
14 ⁰ _{-0.05}	5.5	_	5.2	30	3.5×6×3.2	400	1.37	2.16	6.54	42.1	6.54	42.1	15.4	0.018	0.51
18 0 -0.05	6	_	7.5	30	3.5×6×4.5	1000	2.45	3.92	16	92.9	16	92.9	36	0.03	1.08
24 ⁰ _{-0.05}	8	_	8.5	40	4.5×8×4.5	1430	4.02	6.08	24.5	138	21.7	123	59.5	0.06	1.5
42 0 -0.05	9	23	9.5	40	4.5×8×4.5	1800	6.66	9.8	50.3	278	44.4	248	168	0.135	3

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-144.) Static permissible moment*: 1 block; static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model RSH-Z/WZ variations.

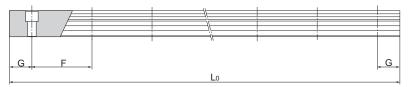
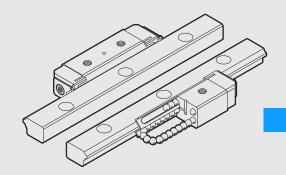



Table1 Standard Length and Maximum Length of the LM Rail for Model RSH-Z/WZ

Unit: mm

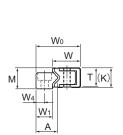
Model No.	RSH 7Z	RSH 9Z	RSH 12Z	RSH 15Z	RSH 7WZ	RSH 9WZ	RSH 12WZ	RSH 15WZ
LM rail standard length (L ₀)	40 55 70 85 100 130	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 190 230 270 310 350 390 430 470 550 670 870	50 80 110 140 170 200 260 290	50 80 110 140 170 200 260 290 320	70 110 150 190 230 270 310 390 470 550	110 150 190 230 270 310 430 550 670 790
Standard pitch F	15	20	25	40	30	30	40	40
G	5	7.5	10	15	10	10	15	15
Max length	300	1000	1340	1430	400	1000	1430	1800

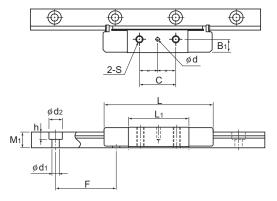
Note) The maximum length varies with accuracy grades. Contact THK for details.

HR

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Models HR, HR-T, HR-M and HR-TM	■ 1-146
Standard Length and Maximum Length of the LM Rail	■ 1-150
Options	B 1-235 B 1-239 B 1-262 B 1-263


A Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features 🔼 1-207 Types and Features A1-208 Rated Loads in All Directions...... A1-209 Equivalent Load A1-209 Example of Clearance Adjustment.... A1-210 Accuracy Standards A1-99 Shoulder Height of the Mounting Base and the Corner Radius A1-313 Error Allowance in the Parallelism between Two Rails A1-316 Error Allowance in Vertical Level between Two Rails A1-319 Comparison of Model Numbers with Cross-roller Guides 41-211

^{*} Please see the separate "A Technical Descriptions of the Products".

Models HR, HR-T, HR-M and HR-TM

Models HR918 and 918M

	0	uter dir	nensio	ns				LM	l block	dimens	sions			
Model No.	Height	Width		Length									Greasing hole	
	М	W	W₀	L	Bı	С	Н	S	h ₂	L ₁	Т	K	d	D ₁
HR 918 HR 918M	8.5	11.4	18	45	5.5	15	_	МЗ	_	25	7.5	8	1.5	_
HR 1123 HR 1123M	11	13.7	23	52	7	15	2.55	МЗ	3	30	9.5	10	2	5
HR 1530 HR 1530M	15	19.2	30	69	10	20	3.3	M4	3.5	40	13	14	2	6.5
HR 2042 HR 2042M	20	26.3	42	91.6	13	35	5.3	M6	5.5	56.6	17.5	19	3	10
HR 2042T HR 2042TM	20	26.3	42	110.7	13	50	5.3	M6	5.5	75.7	17.5	19	3	10
HR 2555 HR 2555M	25	33.3	55	121	16	45	6.8	M8	7	80	22.5	24	3	11
HR 2555T HR 2555TM	25	33.3	55	146.4	16	72	6.8	M8	7	105.4	22.5	24	3	11

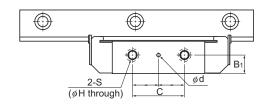
Note) Symbol M indicates that stainless steel is used in the LM block, LM rail and balls. Those models marked with this symbol are therefore highly resistant to corrosion and environment.

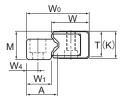
Model number coding

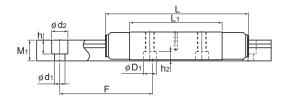
Model number Contamination protection accessory
No. of LM blocks symbol (*1) S

used on the same rail

ion (in mm)
ory
(*1) Stainless steel
LM block


Symbol for LM rail signified use Stainless steel LM rail


Accuracy symbol (*2) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

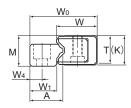

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-99.

Note) One set of model HR means a combination of two LM rails and an LM blocks used on the same plane.

LM rail length

Models HR1123 to 2555M/T/TM

Unit: mm


													,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		L	.M rail c	dimensi	ions			load ing		atic pe			Ма	SS
Width			Height	Pitch		Length*	С	C ₀	2	1 _A	2		LM block	LM rail
W ₁	W ₄	Α	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	kg	kg/m
6.7	3.5	8.7	6.5	25	3×5.5×3	300	1.57	3.04	0.0229	0.17	0.0229	0.17	0.01	0.3
9.5	5	11.6	8	40	3.5×6×4.5	500	2.35	4.31	0.0414	0.272	0.0414	0.272	0.03	0.5
10.7	6	13.5	11	60	3.5×6×4.5	1600	4.31	7.65	0.0982	0.641	0.0982	0.641	0.08	1
15.6	8	19.5	14.5	60	6×9.5×8.5	2200	9.9	17.2	0.308	1.91	0.308	1.91	0.13	1.8
15.6	8	19.5	14.5	60	6×9.5×8.5	2200	13.6	22.9	0.53	2.99	0.53	2.99	0.26	1.8
22	10	27	18	80	9×14×12	2600	18.6	30.5	0.783	4.41	0.783	4.41	0.43	3.2
22	10	27	18	80	9×14×12	2600	25.1	40.8	1.33	6.95	1.33	6.95	0.5	3.2

Note) A moment in the direction M₀ can be received if two rails are used in parallel. However, since it depends on the distance between the two rails, the moment in the direction M₀ is omitted here.

The maximum length under "Length" indicates the standard maximum length of an LM rail. (See 11-150.)

Static permissible moment*: Static permissible moment value with one set of model HR

Models HR, HR-T, HR-M and HR-TM

	0	uter dir	nensio	ns				LN	l block	dimens	sions			
Model No.	Height	Width		Length									Greasing hole	
	М	W	W₀	L	B ₁	С	Η	S	h ₂	L ₁	Т	K	d	D ₁
HR 3065 HR 3065T	30	40.3	65	145 173.5	19	50 80	8.6	M10	9	90 118.5	27.5	29	4	14
HR 3575 HR 3575T	35	44.9	75	154.8 182.5	21.5	60 92.5	10.5	M12	12	103.8 131.5		34	4	18
HR 4085 HR 4085T	40	50.4	85	177.8 215.9	24	70 110	12.5	M14	13	120.8 158.9	36	38	4	20
HR 50105 HR 50105T	50	63.4	105	227 274.5	30	85 130	14.5	M16	15.5	150 197.5	45	48	5	23
HR 60125	60	74.4	125	329	35	160	18	M20	18	236	55	58	5	26

Model number coding

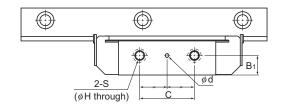
2 HR4085T UU +1500L P T

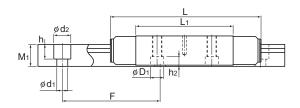
Model number C

used on the same rail

Contamination protection accessory symbol (*1)

LM rail length (in mm)


Symbol for LM rail jointed use


ccessory /mbol (*1) Accuracy Normal ar

Accuracy symbol (*2) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-99.

Note) One set of model HR means a combination of two LM rails and an LM blocks used on the same plane.

Unit: mm

		L	M rail d	limensi	ons		Basic rat	load ing		atic pe			Ма	ISS
Width			Height	Pitch		Length*	С	C ₀	1	∏ √ ≽	11		LM block	LM rail
W ₁	W ₄	А	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	kg	kg/m
25	12	31.5	22.5	80	9×14×12	3000	24.2 32.1	38.6 51.6	1.11 1.89	6.72 10.4	1.11 1.89	6.72 10.4	0.7 0.9	4.6
30.5	14.5	37	26	105	11×17.5×14	3000	30 40.2	47.8 63.6	1.53 2.59	8.84 13.5	1.53 2.59	8.84 13.5	1.05 1.4	6.4
35	16	42.5	29	120	14×20×17	3000	44.1 59.5	68.6 91.7	2.64 4.48	14.4 23	2.64 4.48	14.4 23	1.53 1.7	8
42	20	51.5	37	150	18×26×22	3000	70.7 96	107 143	5.15 8.74	28.9 45.7	5.15 8.74	28.9 45.7	3.06 3.5	12.1
51	25	65	45	180	22×32×25	3000	141	206	14.3	79.6	14.3	79.6	7.5	19.3

Note) A moment in the direction M₀ can be received if two rails are used in parallel. However, since it depends on the distance between the two rails, the moment in the direction M₀ is omitted here.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-150.)

Static permissible moment*: Static permissible moment value with one set of model HR

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model HR variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

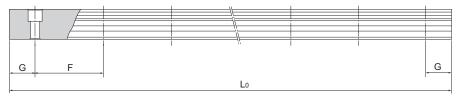


Table1 Standard Length and Maximum Length of the LM Rail for Model HR

Unit: mm

Model No.	HR 918	HR 1123	HR 1530	HR 2042	HR 2555	HR 3065	HR 3575	HR 4085	HR 50105	HR 60125
LM rail standard length (L ₀)	70 120 220 295	110 230 310 390	160 280 340 460 580	220 280 340 460 640	280 440 600 760 1000 1240	280 440 600 760 1000 1240	570 885 1200 1620 2040 2460	780 1020 1260 1500 1980 2580	1270 1570 2020 2620	1530 1890 2250 2610
Standard pitch F	25	40	60	60	80	80	105	120	150	180
G	10	15	20	20	20	20	22.5	30	35	45
Max length	300	500	1600	2200	2600	3000	3000	3000	3000	3000

Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

Accessories

[Dedicated Mounting Bolt]

Normally, when mounting the LM block to adjust a clearance, use the tapped hole provided on the LM block to secure it as shown in Fig.1.

The holes of the bolt (d₁ and D₁) must be machined so that they are greater by the adjustment allowance.

If it is inevitable to use the mounting method as indicated by Fig.2 for a structural reason, the dedicated mounting bolt as shown in Fig.3 is required for securing the LM block. Be sure to specify that the dedicated mounting bolt is required when ordering the LM Guide.

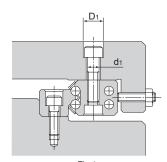
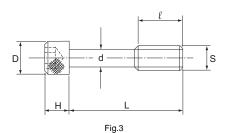



Fig.1

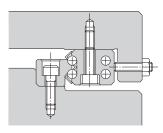
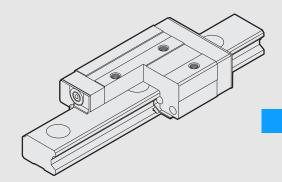



Fig.2 Table2 Dedicated Mounting Bolt

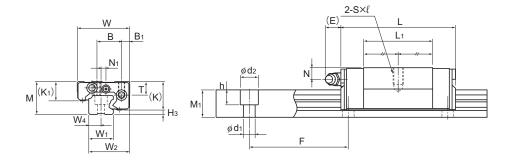
		.02 20	·aioaio	, ao c	9		O
Model No.	S	d	D	Н	L	l	Supported model number
B 3	М3	2.4	5.5	3	17	5	HR 1530
B 5	M5	4.1	8.5	5	22	7	HR 2042
B 6	M6	4.9	10	6	28	9	HR 2555
B 8	M8	6.6	13	8	34	12	HR 3065
B 10	M10	8.3	16	10	39	15	HR 3575
B 12	M12	10.1	18	12	45	18	HR 4085
B 14	M14	11.8	21	14	55	21	HR 50105
B 16	M16	13.8	24	16	66	24	HR 60125

Unit: mm

GSR

LM Guide

Product Specifications

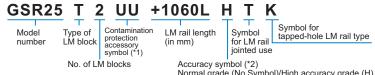

Dimensional Drawing, Dimensional Table Models GSR-T and GSR-V	■ 1-154
Standard Length and Maximum Length of the LM Rail	■ 1-156
Options	■ 1-235
with LaCS and Seals Attached	B 1-240
Cap C	B 1-262
Cap GC	B 1-263

A Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features A1-213 Types and Features A1-214 Rated Loads in All Directions A1-215 Equivalent Load A1-215 Example of Clearance Adjustment.... A1-216 Accuracy Standards 🔼 1-100 Shoulder Height of the Mounting Base and the Corner Radius A1-313 Error Allowance in the Parallelism between Two Rails A1-316 Error Allowance in Vertical Level between Two Rails 41-319

^{*} Please see the separate "A Technical Descriptions of the Products".

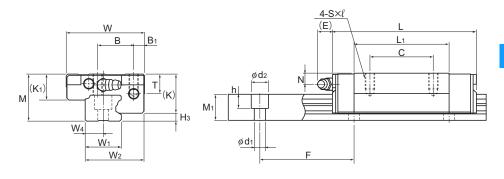
Models GSR-T and GSR-V


Model GSR15T/V

Models GSR15 to 25V

		Outer nension						LM b	olock (dimen	sions					
Model No.	Height M	Width W	Length L	B ₁	В	С	s×l	L ₁	Т	К	K ₁	N	N ₁	Е	Grease nipple	Н₃
GSR 15T GSR 15V	20	32	59.8 47.1	5	15	26 —	M4×7	40.2 27.5	8.25	16.8	12	4.5	3	5.5	PB107	3.2
GSR 20T GSR 20V	24	43	74 58.1	7	20	30 —	M5×8	50.2 34.3	9.7	20.6	13.6	5	1	12	B-M6F	3.4
GSR 25T GSR 25V	30	50	88 69	7	23	40 —	M6×10	60.2 41.2	12.7	25.4	16.8	7	_	12	B-M6F	4.6
GSR 30T	33	57	103	8	26	45	M8×12	70.3	14.6	28.5	18	7	_	12	B-M6F	4.5
GSR 35T	38	68	117	9	32	50	M8×15	80.3	15.6	32.5	20.5	8	-	12	B-M6F	5.5

Model number coding


Combination of LM rail and LM block

Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)

(*1) See contamination protection accessory on A1-352. (*2) See A1-100.

Note) One set of model GSR: This model number indicates that a single-rail unit constitutes one set.

Models GSR20 to 35T, Models GSR20V and 25V

Models GSR15 to 35T

Unit: mm

		l	LM ra	il dime	ensions		Basic rat				rmissibl t kN-m*	е	Ма	SS
Width			Height	Pitch		Length*	С	C°	\	`		T' =	LM block	LM rail
W ₁	W_2	W ₄	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	kg	kg/m
15	25	7.5	11.5	60	4.5×7.5×5.3	2000	5.69 4.31				0.0452 0.0218		0.13 0.08	1.2
20	33	10	13	60	6×9.5×8.5	3000	9.22 7.01	13.2 8.82	0.102 0.0498		0.0885 0.0431		0.25 0.17	1.8
23	38	11.5	16.5	60	7×11×9	3000	13.5 10.29	19 12.65	0.177 0.0858	0.965 0.522	0.152 0.0742	0.831 0.451	0.5 0.29	2.6
28	44.5	14	19	80	9×14×12	3000	18.8	25.9	0.282	1.54	0.243	1.32	0.6	3.6
34	54	17	22	80	11×17.5×14	3000	25.1	33.8	0.421	2.28	0.362	1.96	1	5

Note) A moment in the direction M₀ can be received if two rails are used in parallel. However, since it depends on the distance between the two rails, the moment in the direction M₀ is omitted here.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-156.) Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks in close contact.

Clients who require wall-mounted installations or oil lubrication should contact THK.

Model number coding

LM block

GSR25 T UU

Model number Contamination protection accessory symbol (*1)

Type of LM block

LM rail

GSR25 -1060L

Model LM number (in

LM rail length (in mm)

Symbol for tapped-hole LM rail type

Accuracy symbol (*2) Normal grade (No Symbol) High accuracy grade (H) Precision grade (P)

(*1) See contamination protection accessory on \$\blue{1}\$-352. (*2) See \$\blue{1}\$-100.

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model GSR variations.

In case the required quantity is large and the lengths are not the same, we recommend preparing an LM rail of the maximum length in stock. This is economical since it allows you to cut the rail to the desired length as necessary.

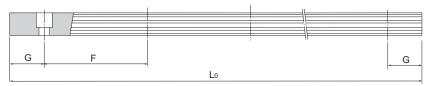
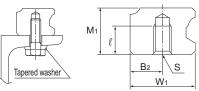


Table1 Standard Length and Maximum Length of the LM Rail for Model GSR

Unit: mm


Model No.	GSR 15	GSR 20	GSR 25	GSR 30	GSR 35
LM rail standard length (L ₀)	460 820 1060 1600	460 820 1060 1600	460 820 1060 1600	1240 1720 2200 3000	1240 1720 2200 3000
Standard pitch F	60	60	60	80	80
G	20	20	20	20	20
Max length	2000	3000	3000	3000	3000

Note) The maximum length varies with accuracy grades. Contact THK for details.

Tapped-hole LM Rail Type of Model GSR

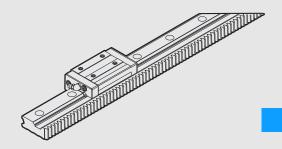

- Since the bottom of the LM rail has a tapped hole, this model can easily be installed on an H-shape steel and channel.
- Since the top face of the LM rail has no mounting hole, the sealability is increased and entrance of foreign material (e.g., cutting chips) can be prevented.
- (1) Determine the bolt length so that a clearance of 2 to 3 mm is secured between the bolt end and the bottom of the tap (effective tap depth).
- (2) As shown in Fig.1, a tapered washer is also available that allows GSR to be mounted on a section steel.
- (3) For model number coding, see 1-154 to 1-155.

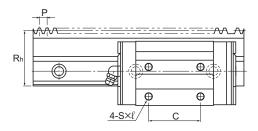
Table2 Tap Position and Depth Shape

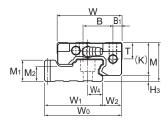
Model No.	W ₁	B ₂	M ₁	S×ℓ
GSR 15	15	7.5	11.5	M4×7
GSR 20	20	10	13	M5×8
GSR 25	23	11.5	16.5	M6×10
GSR 30	28	14	19	M8×12
GSR 35	34	17	22	M10×14

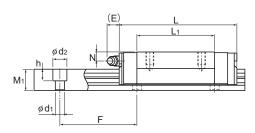
GSR-R

LM Guide

Product Specifications

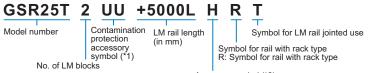

Dimensional Drawing, Dimensional Table Model GSR-R	■ 1-158
Standard Length of the LM Rail	B 1-160
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B1-238
	- 1 212


□ Technical Descriptions of the Products (Separate)



^{*} Please see the separate "A Technical Descriptions of the Products".

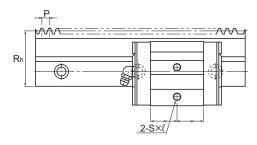
Model GSR-R

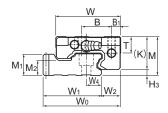

Model GSR-T-R

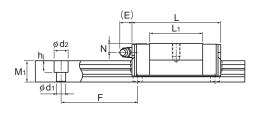
		Rack			Outer dimensions				LM block dimensions										
	Model No.	Reference pitch dimension	Module	Pitch line height	Height	Width	Wo	Length	Вı	В	С	s×ℓ	L ₁	Т	К	N	Е	Grease nipple	Нз
Ī	GSR 25T-R GSR 25V-R	6	1.91	43	30	50	59.91	88 69	7	23	40 —	M6×10	60.2 41.2	12.7	25.4	7	12	B-M6F	4.6
Ī	GSR 30T-R	8	2.55	48	33	57	67.05	103	8	26	45	M8×12	70.3	14.6	28.5	7	12	B-M6F	4.5
	GSR 35T-R	10	3.18	57	38	68	80.18	117	9	32	50	M8×15	80.3	15.6	32.5	8	12	B-M6F	5.5

Note) A special type with a module pitch is also available. Contact THK for details. For checking the pinion strength, see A1-223.

Model number coding


Single-rail LM Guide




Accuracy symbol (*2) Normal grade (No Symbol)/High accuracy grade (H)

(*1) See contamination protection accessory on A1-352. (*2) See A1-100.

Note) This model number indicates that a single-rail unit constitutes one set.

Model GSR25V-R

Unit: mm

		L	.M rail o	dimens	ions			load ing			rmissib t kN-m		Mass	
Width			Height	Pitch			С	Co		■ ✓ ►	ے (اللے		LM block	LM rail
W ₁	W_2	W ₄	M ₁	F	M ₂	$d_1 \! \times \! d_2 \! \times \! h$	kN	kN		Double blocks		Double blocks	kg	kg/m
44.91	15	11.5	16.5	60	11.5	7×11×9	13.5 10.29		0.177 0.0858				0.5 0.29	4.7
50.55	16.5	14	19	80	12	9×14×12	18.8	25.9	0.282	1.54	0.243	1.32	0.6	5.9
60.18	20	17	22	80	14.5	11×17.5×14	25.1	33.8	0.421	2.28	0.362	1.96	1	8.1

Note) A moment in the direction M₀ can be received if two rails are used in parallel. However, since it depends on the distance between the two rails, the moment in the direction Mc is omitted here.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See ■1-160.) Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks in close contact.

Clients who require wall-mounted installations or oil lubrication should contact THK.

Model number coding

LM block

GSR25T UU

Model number

Contamination protection accessory symbol (*1)

Rail with rack

GSR25-2004L H

R: Symbol for rail with rack type

Accuracy symbol (*2) Normal grade (No Symbol) High accuracy grade (H)

(*1) See contamination protection accessory on \$\mathbb{A}\$1-352. (*2) See \$\mathbb{A}\$1-100.

Standard Length of the LM Rail

Table1 shows the standard LM rail lengths of model GSR-R variations.

Since both end faces of the LM rail of model GSR-R are machined, it can be joined with another rail without additional machining.

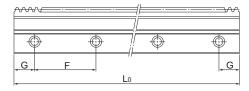
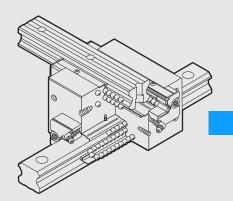



Table1 Standard Length of the LM Rail for Model GSR-R

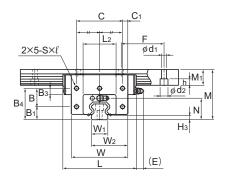
Unit: mm

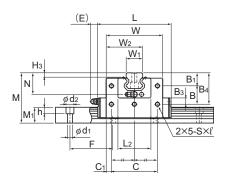
Model No.	GSR	25-R	GSR	30-R	GSR 35-R			
LM rail Standard length (Lo)	1500	2004	1504	2000	1500	2000		
Standard pitch F	60	60	80	80	80	80		
G	30	42	32	40	30	40		

CSR

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Model CSR	■ 1-162
Standard Length and Maximum Length of the LM Rail	■ 1-164 ■ 1-165
OptionsThe LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B 1-240
Cap C	B 1-262
Cap GC	B 1-263


A Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features \$\texttt{\textsq}1-227 Types and Features A1-228 Rated Loads in All Directions A1-228 Equivalent Load A1-229 Radial Clearance Standard A1-90 Accuracy Standards A1-98 Shoulder Height of the Mounting Base and the Corner Radius A1-308 Error Allowance in the Parallelism between Two Rails A1-315 Error Allowance in Vertical Level between Two Rails 41-318

^{*} Please see the separate "A Technical Descriptions of the Products".

Model CSR

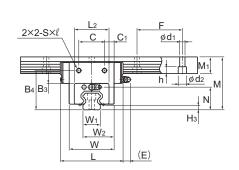
Models CSR20 to 45

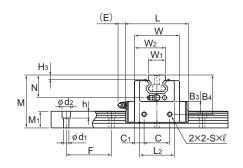
		Outer dimensions			LM block dimensions											
Model No.	Height M	Width W	Length L	B₁	Вз	B ₄	В	С	C ₁	s×ℓ	L ₂	Нз	N	Е	Grease nipple	Нз
CSR 15	47	38.8	56.6	_	11.3	34.8	_	20	9.4	M4×6	32	3.5	19.5	5.5	PB1021B	3.5
CSR 20S CSR 20	57	50.8 66.8	74 90	_ 13	13.3 7.8	42.5 37	_ 24	30 56	10.4 5.4	M5×8	42	4	25	12	B-M6F	4
CSR 25S CSR 25	70	59.5 78.6	83.1 102.2	_ 18	17 9	52 44	_ 26	34 64	12.75 7.3	M6×10	46	5.5	30	12	B-M6F	5.5
CSR 30S CSR 30	82	70.4 93	98 120.6	_ 21	20 12	61 53	_ 32	40 76	15.2 8.5	M6×10	58	7	35	12	B-M6F	7
CSR 35	95	105.8	134.8	24	14	61	37	90	7.9	M8×14	68	7.5	40	12	B-M6F	7.5
CSR 45	118	129.8	170.8	30	16	75	45	110	9.9	M10×15	84	10	50	16	B-PT1/8	10

Model number coding

4 CSR25 UU C0 +1200/1000L F

Model number Contamination protection accessory symbol (*1)

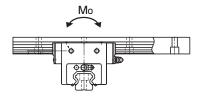

LM rail length on the X axis (in mm)


LM rail length on the Y axis (in mm)

Total No. of LM blocks Radial clearance symbol (*2)
Normal (No symbol)/Light preload (C1)
Medium preload (C0)

Accuracy symbol (*3) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on \$\textit{A}\$1-352. (*2) See \$\textit{A}\$1-90. (*3) See \$\textit{A}\$1-98.



Models CSR15, 20S to 30S

Unit: mm

		LM rai	l dimens	sions		Ba load	sic rating	Static permissi- ble moment	Mass	
Width		Height	Pitch		Length*	С	C ₀	Мо	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	kN-m	kg	kg/m
15	26.9	15	60	4.5×7.5×5.3	2500	8.33	13.5	0.0805	0.34	1.5
20	35.4 43.4	18	60	6×9.5×8.5	3000	13.8 21.3	23.8 31.8	0.19 0.27	0.73 1.3	2.3
23	41.25 50.8	22	60	7×11×9	3000	19.9 27.2	34.4 45.9	0.307 0.459	1.2 2.2	3.3
28	49.2 60.5	26	80	9×14×12	3000	28 37.3	46.8 62.5	0.524 0.751	2 3.6	4.8
34	69.9	29	80	9×14×12	3000	50.2	81.5	1.2	5.3	6.6
45	87.4	38	105	14×20×17	3090	80.4	127.5	2.43	9.8	11

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 🖪 1-164.)

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model CSR variations.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

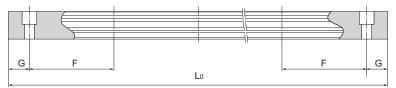
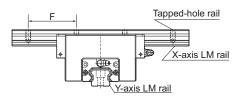


Table1 Standard Length and Maximum Length of the LM Rail for Model CSR


Unit: mm

Model No.	CSR 15	CSR 20	CSR 25	CSR 30	CSR 35	CSR 45
	160	220	220	280	280	570
	220	280	280	360	360	675
	280	340	340	440	440	780
	340	400	400	520	520	885
	400	460	460	600	600	990
	460	520	520	680	680	1095
	520	580	580	760	760	1200
	580	640	640	840	840	1305
	640	700	700	920	920	1410
	700	760	760	1000	1000	1515
	760	820	820	1080	1080	1620
	820	940	940	1160	1160	1725
	940	1000	1000	1240	1240	1830
	1000	1060	1060	1320	1320	1935
LM rail standard	1060	1120	1120	1400	1400	2040
length (L ₀)	1120	1180	1180	1480	1480	2145
length (Lo)	1180	1240	1240	1560	1560	2250
	1240	1360	1300	1640	1640	2355
	1360	1480	1360	1720	1720	2460
	1480	1600	1420	1800	1800	2565
	1600	1720	1480	1880	1880	2670
		1840	1540	1960	1960	2775
		1960	1600	2040	2040	2880
		2080	1720	2200	2200	2985
		2200	1840	2360	2360	3090
			1960	2520	2520	
			2080	2680	2680	
			2200	2840	2840	
			2320	3000	3000	
			2440			
Standard pitch F	60	60	60	80	80	105
G	20	20	20	20	20	22.5
Max length	2500	3000	3000	3000	3000	3090

Note) The maximum length varies with accuracy grades. Contact THK for details.

Tapped-hole LM Rail Type of Model CSR

The model CSR variations include a type with its LM rail bottom tapped. With the X-axis LM rail having tapped holes, this model can be secured with bolts from the top.

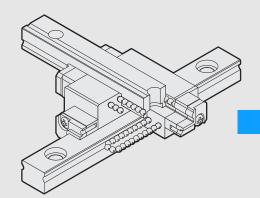

		•
Model No.	S ₁	Effective tap depth ℓ_1
15	M5	8
20	M6	10
25	M6	12
30	M8	15
35	M8	17
45	M12	24

Table2 Dimensions of the LM Rail Tap Unit: mm

Model number coding

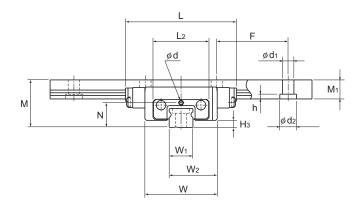
CSR25 UU C0 +1200L P K/1000L P

Symbol for tapped-hole LM rail type

MX

LM Guide

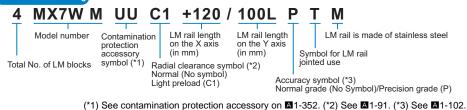
Product Specifications


Dimensional Drawing, Dimensional Table Model MX	■ 1-168
Standard Length and Maximum Length of the LM Rail	■ 1-170
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B 1-240

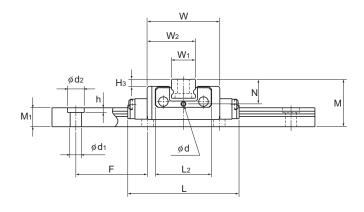
A Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features A1-231 Types and Features 🔼 1-232 Rated Loads in All Directions A1-232 Equivalent Load 🔼 1-232 Radial Clearance Standard...... 1-91 Accuracy Standards 🔼1-102 Shoulder Height of the Mounting Base and the Corner Radius A1-309

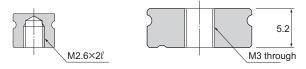
^{*} Please see the separate "A Technical Descriptions of the Products".


Model MX

	0	uter dimensio	ns	LM	block dimensi	ions		
Model No.	Height	Width	Length			Greasing hole		
	М	W	L	L ₂	N	d	H₃	
MX 5M	10	15.2	23.3	11.8	5.2	0.8	1.5	
MX 7WM	14.5	30.2	40.8	24.6	7.4	1.2	2	


Note) The LM block, rail, and ball material are composed of stainless steel and are corrosion resistant to general environments.

Note) If the LM rail mount of a semi-standard model is of a tapped-hole LM rail type, add symbol "K" after the accuracy symbol.


Example: 4 MX7W M UU C1+120/100L P K T M

	LN	M rail d	imensi	ons		Basic rat	load	Static Permissible Moment* N-m	Mass		
Width		Height	Pitch		Length*	С	Co	Mo	LM block	LM rail	
W_1	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN		kg	kg/m	
5 ⁰ _{-0.02}	10.1	4	15	2.4×3.5×1	200	0.59	1.1	2.57	0.01	0.14	
14 ⁰ -0.025	22.1	5.2	30	3.5×6×3.2	400	2.04	3.21	14.7	0.051	0.51	

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-170.) Static permissible moment*: static permissible moment value with 1 LM block

For the LM rail mounting hole, a tapped-hole LM rail type is available as semi-standard.

Model MX5M Model MX7WM

When mounting the LM rail of model MX7WM, take into account the thread length of the mounting bolt in order not to let the bolt end stick out of the top face of the LM rail.

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model MX variations.

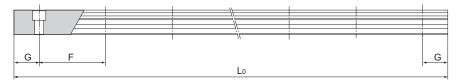
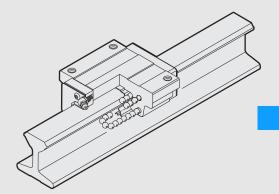



Table1 Standard Length and Maximum Length of the LM Rail for Model MX

Unit: mm

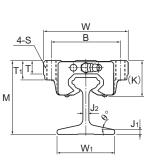
Model No.	MX 5	MX 7W
LM rail standard length (L _o)	40 55 70 100 130 160	50 80 110 140 170 200 260 290
Standard pitch F	15	30
G	5	10
Max length	200	400

Note) The maximum length varies with accuracy grades. Contact THK for details.

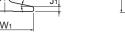
JR

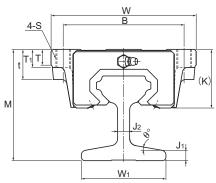
LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Models JR-A, JR-B and JR-R	■ 1-172
Standard Length and Maximum Length of the LM Rail	■ 1-174 ■ 1-175 ■ 1-175
Options The LM Block Dimension (Dimension L) with LaCS and Seals Attached	■ 1-235

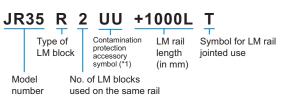
A Technical Descriptions of the Products (Separate)


Technical Descriptions Structure and Features A1-235 Second Moment of Inertia of the LM Rail A1-235 Types and Features A1-236 Rated Loads in All Directions............. A1-237 Equivalent Load A1-237 Accuracy Standards A1-97 Shoulder Height of the Mounting Base and the Corner Radius A1-308 Error Allowance in the Parallelism between Two Rails 🔼 1-315 Error Allowance in Vertical Level between Two Rails A1-318

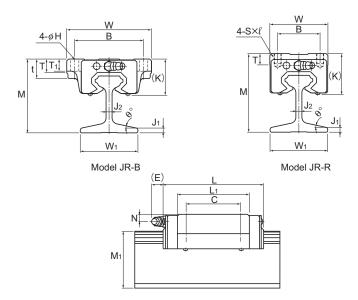

^{*} Please see the separate "A Technical Descriptions of the Products".

Models JR-A, JR-B and JR-R

Models JR25 and 35-A



Models JR45 and 55-A


		Outer nension			LM block dimensions											
Model No.	Height M	Width W	Length L	В	C	Ŧ	s×ℓ	L ₁	t	Т	T ₁	К	Z	E	Grease nipple	
JR 25A JR 25B JR 25R	61 61 65	70 70 48	83.1	57 57 35	45 45 35	- 7 -	M8* - M6×8	59.5	- 16 -	11 11 9	16 10 –	30.5 30.5 34.5	6 6 10	12	B-M6F	
JR 35A JR 35B JR 35R	73 73 80	100 100 70	113.6	82 82 50	62 62 50	9	M10* - M8×12	80.4	_ 21 _	12 12 11.7	21 13 —	40 40 47.4	8 8 15	12	B-M6F	
JR 45A JR 45B JR 45R	92 92 102	120 120 86	145	100 100 60	80 80 60	_ 11 _	M12* - M10×17	98	25 25 —	13 13 15	15 15 —	50 50 59.4	10 10 20	16	B-PT1/8	
JR 55A JR 55B JR 55R	114 114 124	140 140 100	165	116 116 75	95 95 75	_ 14 _	M14* - M12×18	118	29 29 —	13.5 13.5 20.5	17 17 —	57 57 67	11 11 21	16	B-PT1/8	

Note) "*" indicates a through hole.

Model number coding

(*1) See contamination protection accessory on A1-352

	LN	∕l rail d	imensi	ons		Ba load i				permis			Mass									
Width				Height	Length*	С	Co	~	M _A		Мв		M _B		M _B		M _B		M _B		LM block	LM rail
W ₁	J₁	J_2	θ°	M ₁	Max	kN	kN	1 Double blocks		1 block	Double blocks	1 block	kg	kg/m								
48	4	5	12	47	2000	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.59 0.59 0.54	4.2								
54	7	8	10	54	4000	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.6 1.6 1.5	8.6								
70	8	10	10	70	4000	60	95.6	1.42 7.92		1.42 7.92		1.83	2.8 2.8 2.6	15.2								
93	4.8	11.6	12	90	4000	88.5	137	2.45 13.2		2.45 13.2		3.2	4.5 4.5 4.3	18.3								

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-174.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model JR variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details.

Table1 Standard Length and Maximum Length of the LM Rail for Model JR

Unit: mm

Model No.	JR 25	JR 35	JR 45	JR 55
LM rail standard length (L ₀)	1000 1500 2000	1000 2000 4000	1000 2000 4000	1000 2000 4000
Max length	2000	4000	4000	4000

Note1) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK. Note2) For jointing two or more rails, a metal fitting like the one shown in Fig.1 is available. Contact THK for details.

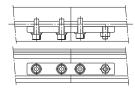
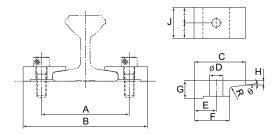
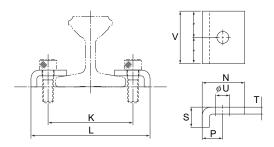
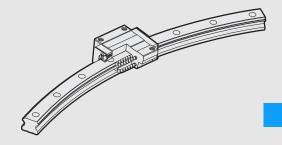



Fig.1


Model JB frame for LM rail clamps

Unit: mm


Model No.		nting nsions				Bolt used						
	Α	В	С	D	Е	F	G	Н	R	J	θ°	
JB 25	57	78	25	7	10.5	15	10	3.8	R2	25	10	M 6
JB 35	72	102	35	9	15	24	12	3.1	R2	32	8	M 8
JB 45	90	130	45	11	20	30	16	5.4	R2	40	8	M10
JB 55	115	155	50	50 14 20 30 17 8.2 R2 50 10								

Model JT steel plate for LM rail clamps

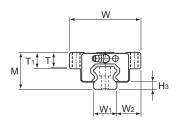
Unit: mm

Model No.		nting nsions		Clamper dimensions									
	K	L	N	Р	S	V							
JT 25	57	79	25	11	10	4	7	25	M 6				
JT 35	65	91	27	13	13	4.5	9	40	M 8				
JT 45	84	114	33	15	16	6	11	50	M10				
JT 55	110	148	50	M12									

HCR

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table R Guide Model HCR	■ 1-178
OptionsThe LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B1-240 B1-262
Cap GC	■ 1-263

A Technical Descriptions of the Products (Separate)

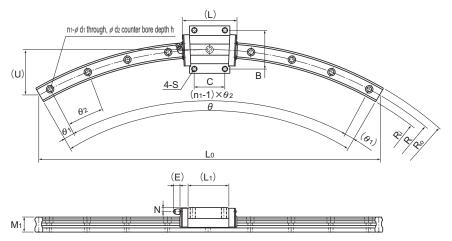
Technical Descriptions Structure and Features 🔼 1-241 Types and Features 🔼 1-242 Rated Loads in All Directions A1-242 Radial Clearance Standard...... 🔼 1-91 Accuracy Standards 🔼 1-97 Shoulder Height of the Mounting Base and the Corner Radius A1-310

^{*} Please see the separate "A Technical Descriptions of the Products".

R Guide Model HCR

	Oute	r dimen	sions				LM I	olock d	imensio	ons				
Model No.	Height M	Width	Length L	В	С	S	Lı	Т	T ₁	N	E	Grease nipple	Нз	
HCR 12A+60/100R	18	39	44.6	32	18	M4	30.5	4.5	5	3.4	3.5	PB107	3.1	
HCR 15A+60/150R HCR 15A+60/300R HCR 15A+60/400R		47	54.5 55.5 55.8	38	24 28 28	M5	38.8	10.3	11	4.5	5.5	PB1021B	3.5	
HCR 25A+60/500R HCR 25A+60/750R HCR 25A+60/1000R	36	70	81.6 82.3 82.5	57	45	M8	59.5	14.9	16	6	12	B-M6F	5.5	
HCR 35A+60/600R HCR 35A+60/800R HCR 35A+60/1000R HCR 35A+60/1300R	48	100	107.2 107.5 108.2 108.5	82	58	M10	80.4	19.9	21	8	12	B-M6F	7.5	
HCR 45A+60/800R HCR 45A+60/1000R HCR 45A+60/1200R HCR 45A+60/1600R	60	120	136.7 137.3 137.3 138	100	70	M12	98	23.9	25	10	16	B-PT1/8	10	
HCR 65A+60/1000R HCR 65A+60/1500R HCR 65A+45/2000R HCR 65A+45/2500R HCR 65A+30/3000R	90	170	193.8 195.4 195.9 196.5 196.5	142	106	M16	147	34.9	37	19	16	B-PT1/8	14	

Model number coding


HCR25A 2 UU C1 +60 / 1000R H T

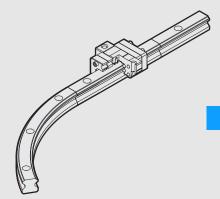
Model number Dust prevention accessory symbol (*1) R-Guide center angle LM rail radius (in mm) Symbol for LM rail jointed use

No. of LM blocks Normal (No symbol) used on the same rail Light preload (C1)

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H)

(*1) See contamination protection accessory on \$\mathbb{A}1-352\$. (*2) See \$\mathbb{A}1-91\$. (*3) See \$\mathbb{A}1-97\$.

	LM rail dimensions												Ba loa rati	ad			perm ent k			Mass			
					Width		Height						С	Co	2 \	M _A				一一	₽ ≥	LM block	LM rail
R	R₀	Ri	Lo	J	W ₁	W_2		d₁×d₂×h	n ₁	θ°	θı°	θ ₂ °	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m		
100	106	94		13.4	12	13.5	11	3.5×6×5	3	60	7	23				0.228	0.0409	0.228	0.0445	0.08	0.83		
300	307.5	142.5 292.5 392.5	300	20.1 40 54	15	16	15	4.5×7.5×5.3	3 5 7	60	7 6 3	12	6.66 8.33 8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.2	1.5		
750	761.5	488.5 738.5 988.5	750		23	23.5	22	7×11×9	9 12 15	60	2 2.5 2	7 5 4	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.59	3.3		
800 1000	817 1017	583 783 983 1283	800 1000	134	34	33	29	9×14×12	7 11 12 17	60	3 2.5 2.5 2	9 5.5 5 3.5	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.6	6.6		
1000 1200	1022.5 1222.5	777.5 977.5 1177.5 1577.5	1000 1200	134 161	45	37.5	38	14×20×17	8 10 12 15	60	2 3 2.5 2	8 6 5 4	60	95.6	1.42	7.92	1.42	7.92	1.83	2.8	11.0		
1500 2000 2500	1531.5 2031.5 2531.5	968.5 1468.5 1968.5 2468.5 2968.5	1500 1531 1913	201 152 190	63	53.5	53	18×26×22	8 10 12 13 10	60 60 45 45 30	2 3 0.5 1.5 1.5	8 6 4 3.5 3	141	215	4.8	23.5	4.8	23.5	5.82	8.5	22.5		


Note) LM rail radiuses other than the radiuses in the above table are also available. Contact THK for details.

The R-Guide center angles in the table are maximum manufacturing angles. To obtain angles greater than them, rails

must be additionally connected. Contact THK for details.

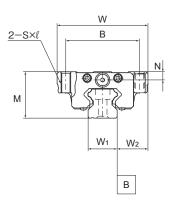
Static permissible moment*: 1 block: static permissible moment value with 1 LM block

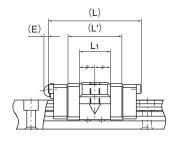
Double blocks: static permissible moment value with 2 blocks in close contact.

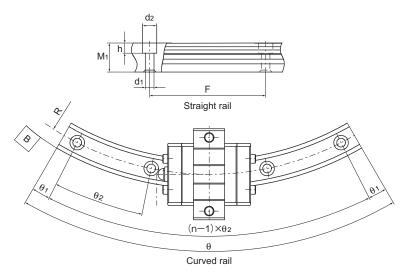
HMG

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Model HMG	■ 1-182
Jointed LM rail	B 1-184
Options The LM Block Dimension (Dimension L)	B1-235
with LaCS and Seals Attached	B1-241
	■ 1-262


▲ Technical Descriptions of the Products (Separate)


^{*} Please see the separate "A Technical Descriptions of the Products".

Model HMG

Outer dimensions LM block dimensions LM rail dimensions													
	O	uter air	nensior	าร		LIVI DIOCK O	imensi	ons		LIV	ı ralı di	mensic	ons
Model No.											LM rail		Height
	М	W	L	L′	В	s×ℓ	L ₁	Ζ	Е	W ₁	W ₂	F	M ₁
HMG15A	24	47	48	28.8	38	M5×11	16	4.3	5.5	15	16	60	15
HMG25A	36	70	62.2	42.2	57	M8×16	25.6	6	12	23	23.5	60	22
HMG35A	48	100	80.6	54.6	82	M10×21	32.6	8	12	34	33	80	29
HMG45A	60	120	107.6	76.6	100	M12×25	42.6	10	16	45	37.5	105	38
HMG65A	90	170	144.4	107.4	142	M16×37	63.4	19	16	63	53.5	150	53

 Mounting hole			Basic dynamic load rating (C)	Basic static load rating (C ₀)				
wounting note			Curved ra			• ,	0	0 1 "
$d_1{\times}d_2{\times}h$	R	n	θ°	θı°	θ ₂ °	Resultant load (C) kN	Straight section (Cost) kN	Curved section (Cor) kN
	150	3	60	7	23			
$4.5 \times 7.5 \times 5.3$	300	5	60	6	12	2.56	4.23	0.44
	400	7	60	3	9			
	500	9	60	2	7			
7×11×9	750	12	60	2.5	5	9.41	10.8	6.7
	1000	15	60	2	4			
	600	7	60	3	9			
9×14×12	800	11	60	2.5	5.5	17.7	19	11.5
3/14/12	1000	12	60	2.5	5	17.7	13	11.5
	1300	17	60	2	3.5			
	800	8	60	2	8			
14×20×17	1000	10	60	3	6	28.1	29.7	18.2
14/20/17	1200	12	60	2.5	5	20.1	23.1	10.2
	1600	15	60	2	4			
	1000	8	60	2	8			
	1500	10	60	3	6			
18×26×22	2000	12	45	0.5	4	66.2	66.7	36.2
	2500	13	45	1.5	3.5			
	3000	10	30	1.5	3			

When a moment is applied where one LM block is specified per axis, the LM block may experience non-smooth motion.

We recommend that multiple LM blocks be used per axis when a moment is applied.

Table 1 shows the static permissible moment of an LM block in the MA, MB and Mc directions.

Table1 Static Permissible Moments of Model HMG

Unit: kN-m

Model No.	N C			Λ _B	M₀ C			
	Straight section	Curved section	Straight section	Curved section	Straight section	Curved section		
HMG15	0.008	0.007	0.008	0.01	0.027	0.003		
HMG25	0.1	0.04	0.1	0.05	0.11	0.07		
HMG35	0.22	0.11	0.22	0.12	0.29	0.17		
HMG45	0.48	0.2	0.48	0.22	0.58	0.34		
HMG65	1.47	0.66	1.47	0.73	1.83 0.94			

Jointed LM rail

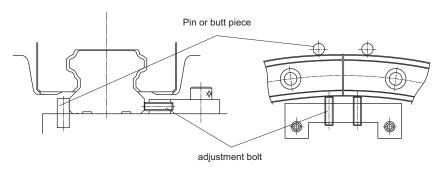
[Level Difference Specification for the Joint]

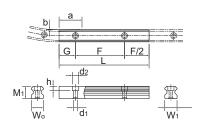
An accuracy error in LM rail installation has influence on the service life of the product. When installing the LM rail, take care to minimize the level difference in the joint within the specification indicated in Table2. For the joint between curved rails and another between the curved section and the joint rail, we recommend using a flushing piece like the one shown in Fig.1. When using the flushing piece, place the fixed butt piece on the outer side, push the rail against the butt piece, and then adjust the level difference in the joint section by turning the adjustment screw from the inner side.

Table2 Level Difference Specification for the Joint Unit: mm

Model No.	Ball raceway, side face	Upper face	Maximum clearance of the joint section
15	0.01	0.02	0.6
25	0.01	0.02	0.7
35	0.01	0.02	1.0
45	0.01	0.02	1.3
65	0.01	0.02	1.3

Note) Place the pin on the outer circumference and the bolt on the inner circumference.




Fig.1 Flush piece

[About the Curved Section]

The curved section of model HMG has a clearance for a structural reason. Therefore, this model may not be used in applications where highly accurate feed is required. In addition, the curved section cannot withstand a large moment. When a large moment is applied, it is necessary to increase the number of LM blocks or LM rails. For permissible moment values, see Table1 on 11-183.

[Jointed LM Rail]

Model HMG always requires a jointed rail where an LM block travels from the straight section to the curved section and where the curve is inverted such as an S curve. Take this into account when design the system.

			Din	nension of	the jointed	rail		
Model No.	Height	Pitch	Mounting hole	Wi	dth	Taper length	Taper depth	Radius
	M ₁	F	d₁×d₂×h	W ₁	W₀	а	b	R
					14.78		0.22	150
15A	15	60	4.5×7.5×5.3	15	14.89	28	0.11	300
					14.92		0.08	400
					22.83		0.17	500
25A	22	60	7×11×9	23	22.89	42	0.11	750
					22.92		0.08	1000
			9×14×12		33.77	54	0.23	600
35A	29	80		34	33.83		0.17	800
33A		00	37 147 12	34	33.86		0.14	1000
					33.9		0.1	1300
					44.71		0.29	800
45A	38	105	14×20×17	45	44.77	76	0.23	1000
43/1	30	100	14/20/17	40	44.81	70	0.19	1200
					44.86		0.14	1600
					62.48		0.52	1000
					62.66		0.34	1500
65A	53	150	18×26×22	63	62.74	4 107	0.26	2000
		.50	.52022		62.8		0.2	2500
					62.83		0.17	3000

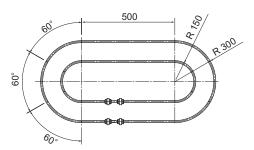
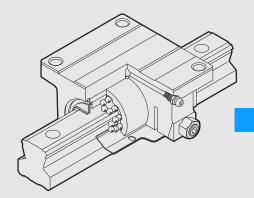


Fig.2 Examle of model No.

Model number coding

When 2 rails are used

HMG15A 2 UU C1 +1000L T + 60/150R 6T + 60/300R 6T - II


Contamination Center angle No. of inner Model number Overall linear Radius of outer Symbol for protection of one inner curved LM rails LM rail length No. of rails (*2) curved rail accessory symbol (*1) curved rail per rail jointed Symbol for Radius of inner Center angle of No. of outer curved No. of LM blocks Radial clearance linear LM rail curved rail one outer curved LM rails jointed joint

per rail symbol Normal (No symbol) Light preload (C1)

rail (*1) See contamination protection accessory on \$\mathbb{A}\$1-352. (*2) See \$\mathbb{A}\$1-35.

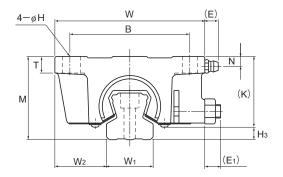
Note) This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used is 2). For the model number above, Fig.2 applies. Model HMG does not have a seal as standard.

冗出伏 ■1-185

NSR-TBC

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Model NSR-TBC	■ 1-188
Standard Length and Maximum Length of the LM Rail	■ 1-190
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B 1-241
Dedicated Bellows J for Model NSR-TBC	B 1-257
Cap C	B 1-262
Cap GC	1-263

▲ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Model NSR-TBC

	Oute	r dimen	sions		LM casing dimensiones									
Model No.	Height M	Width	Length L	В	С	Н	Т	К	N	E	E ₁	Grease nipple	H ₃	
NSR 20TBC	40	70	67	55	50	6.6	8	34.5	5.5	8.5	7	A-M6F	5.5	
NSR 25TBC	50	90	78	72	60	9	10	43.5	6	8.5	7.5	A-M6F	6.5	
NSR 30TBC	60	100	90	82	72	9	12	51	8	8.5	9.5	A-M6F	9	
NSR 40TBC	75	120	110	100	80	11	13	64	10	8.5	12	A-M6F	10.5	
NSR 50TBC	82	140	123	116	95	14	15	74	9	15	15	A-PT1/8	8	
NSR 70TBC	105	175	150	150	110	14	18	95.5	10	15	16.5	A-PT1/8	9.5	

Model number coding

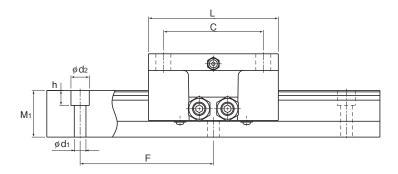
NSR50TBC 2 UU C1 +1200L P T - II

Model number

Contamination protection accessory symbol (*1)

LM rail length (in mm)

No. of LM cases used on the same rail


Radial clearance symbol (*2)
Normal (No symbol)
A Light preload (C1)
Medium preload (C0)

Symbol for No. of rails used on the same plane (*4)

Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-91. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

												•	
			LM r	ail dime	nsions		Basic rati		Static P ble Mo kN		Mass		
	Width Height Pitch		Pitch		Length*	O	C₀) ş		LM casing	LM rail		
	W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	Double casings	Double casings	kg	kg/m	
	23	23.5	23	60	6×9.5×8.5	2200	9.41	18.6	0.31	0.27	0.62	3.1	
	28	31	28	80	7×11×9	3000	14.9	26.7	0.53	0.46	1.13	4.7	
	34	33	34.5	80	7×11×9	3000	22.5	38.3	0.85	0.74	1.8	7.2	
	45	37.5	44.5	105	9×14×12	3000	37.1	62.2	1.7	1.5	3.5	12.2	
	48	46	47.5	120	11×17.5×14	3000	55.1	87.4	2.7	2.4	5.2	14.3	
·	63	56	62	150	14×20×17	3000	90.8	152	9.8	4.9	9.4	27.6	

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-190.)
Static permissible moment : double caseings: static permissible moment value with 2 casings closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model NSR-TBC variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

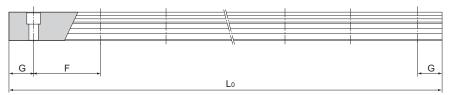


Table1 Standard Length and Maximum Length of the LM Rail for Model NSR-TBC

Unit: mm

Model No.	NSR 20TBC	NSR 25TBC	NSR 30TBC	NSR 40TBC	NSR 50TBC	NSR 70TBC
LM rail standard length (L₀)	220 280 340 460 640 820 1000 1240 1600	280 440 600 760 1000 1240 1640 2040 2520 3000	280 440 600 760 1000 1240 1640 2040 2520 3000	570 885 1200 1620 2040 2460 2985	780 1020 1260 1500 1980 2580 2940	1270 1570 2020 2620
Standard pitch F	60	80	80	105	120	150
G	20	20	20	22.5	30	35
Max length	2200	3000	3000	3000	3000	3000

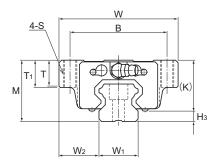
Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

HSR-M1

LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table	
Models HSR-M1A and HSR-M1LA	B 1-192
Models HSR-M1B and HSR-M1LB	B 1-194
Models HSR-M1R and HSR-M1LR	B 1-196
Model HSR-M1YR	B 1-198
Standard Length and Maximum Length of the LM Rail	■ 1-200
Options	B 1-235
The LM Block Dimension (Dimension L) with LaCS and Seals Attached	B 1-241

□ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models HSR-M1A and HSR-M1LA

	dir	Outer mensio				LM block dimensions									
Model No.	Height M	Width W	Length L	В	C	S	L ₁	Т	T 1	К	Z	E	Grease nipple	Нз	
HSR 15M1A	24	47	59.6	38	30	M5	38.8	6.5	11	19.3	4.3	5.5	PB1021B	3.5	
HSR 20M1A HSR 20M1LA	30	63	76 92	53	40	M6	50.8 66.8	9.5	10	26	5	12	B-M6F	4	
HSR 25M1A HSR 25M1LA	36	70	83.9 103	57	45	M8	59.5 78.6	11	16	30.5	6	12	B-M6F	5.5	
HSR 30M1A HSR 30M1LA	42	90	98.8 121.4	72	52	M10	70.4 93	9	18	35	7	12	B-M6F	7	
HSR 35M1A HSR 35M1LA	48	100	112 137.4	82	62	M10	80.4 105.8	12	21	40.5	8	12	B-M6F	7.5	

Note) The length L of the high temperature type LM Guide model HSR is longer than normal type of model HSR. (Dimension Li is the same.)

Model number coding

HSR25 M1 A 2 UU C1 +1240L P T -Ⅱ

Model number

Type of LM block Contamination protection accessory symbol (*1)

LM rail length (in mm)

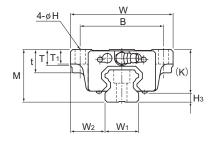
Symbol for LM rail jointed use Symbol for No. of rails used on the same plane (*4)

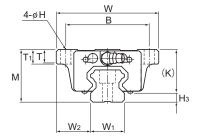

Symbol for high temperature type LM Guide

No. of LM blocks used on the same

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0) Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-95. (*4) See ▲1-35.


Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)



		LM	rail din	nensions			load ing		Statio		Mass					
Width		Height	Pitch		Length*	С	Co		M _A		M _B		M _B		LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m		
15	16	15	60	4.5×7.5×5.3	1240	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.2	1.5		
20	21.5	18	60	6×9.5×8.5	1500	13.8 21.3	23.8 31.8	0.19 0.323	1.04 1.66	0.19 0.323	1.04 1.66	0.201 0.27	0.35 0.47	2.3		
23	23.5	22	60	7×11×9	1500	19.9 27.2	-	0.307 0.529		0.307 0.529	1.71 2.74	0.344 0.459	0.59 0.75	3.3		
28	31	26	80	9×14×12	1500	28 37.3		0.524 0.889		0.524 0.889	2.7 4.37	0.562 0.751	1.1 1.3	4.8		
34	33	29	80	9×14×12	1500	37.3 50.2	-	0.782 1.32	3.93 6.35	0.782 1.32	3.93 6.35	0.905 1.2	1.6 2	6.6		

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-200.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models HSR-M1B and HSR-M1LB

Models HSR15, 25 to 35M1B/M1LB

Models HSR20M1B/M1LB

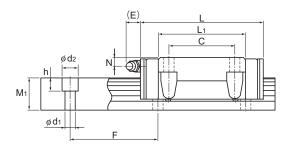
	dir	Outer mensio						LM bl	ock di	mensi	ons				
Model No.	Height M	Width W	Length L	В	С	Н	Lı	t	Т	T 1	К	N	ш	Grease nipple	Нз
HSR 15M1B	24	47	59.6	38	30	4.5	38.8	11	6.5	7	19.3	4.3	5.5	PB1021B	3.5
HSR 20M1B HSR 20M1LB	30	63	76 92	53	40	6	50.8 66.8	-	9.5	10	26	5	12	B-M6F	4
HSR 25M1B HSR 25M1LB	36	70	83.9 103	57	45	7	59.5 78.6	16	11	10	30.5	6	12	B-M6F	5.5
HSR 30M1B HSR 30M1LB	42	90	98.8 121.4	72	52	9	70.4 93	18	9	10	35	7	12	B-M6F	7
HSR 35M1B HSR 35M1LB	48	100	112 137.4	82	62	9	80.4 105.8	21	12	13	40.5	8	12	B-M6F	7.5

Note) The length L of the high temperature type LM Guide model HSR is longer than normal type of model HSR. (Dimension L₁ is the same.)

Model number coding

type LM Guide

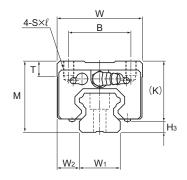
rail


+1000L LB C₀ Contamination Symbol Model number Type of LM rail length Symbol for LM block protection for LM rail (in mm) No. of rails used accessory jointed use on the same plane (*4) symbol (*1) Radial clearance symbol (*2) Accuracy symbol (*3)
Normal (No symbol)
Normal grade (No Symbol)/High accuracy grade (H)
Light preload (C1)
Precision grade (P)/Super precision grade (SP) Symbol for high No. of LM blocks temperature used on the same

Medium preload (C0)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-95. (*4) See ▲1-35.

Ultra precision grade (UP)

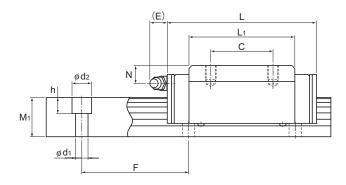

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

						_						_		
		LM	rail din	nensions			load ing			permis			Ма	ISS
Width		Height	Pitch		Length*	С	C₀	2	1 _A		╅	(1) §	LM block	LM rail
W ₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	16	15	60	4.5×7.5×5.3	1240	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.2	1.5
20	21.5	18	60	6×9.5×8.5	1500	13.8 21.3		0.19 0.323	1.04 1.66	0.19 0.323	1.04 1.66	0.201 0.27	0.35 0.47	2.3
23	23.5	22	60	7×11×9	1500	19.9 27.2	-	0.307 0.529		0.307 0.529	1.71 2.74	0.344 0.459	0.59 0.75	3.3
28	31	26	80	9×14×12	1500	28 37.3		0.524 0.889		0.524 0.889	2.7 4.37	0.562 0.751	1.1 1.3	4.8
34	33	29	80	9×14×12	1500	37.3 50.2		0.782 1.32	3.93 6.35	0.782 1.32	3.93 6.35	0.905 1.2	1.6 2	6.6

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-200.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models HSR-M1R and HSR-M1LR

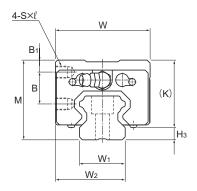
	Oute	r dimer	nsions										
Model No.	Height M	Width W	Length L	В	С	s×ℓ	Lı	Т	К	Z	E	Grease nipple	Н₃
HSR 15M1R	28	34	59.6	26	26	M4×5	38.8	6	23.3	8.3	5.5	PB1021B	3.5
HSR 20M1R HSR 20M1LR	30	44	76 92	32	36 50	M5×6	50.8 66.8	8	26	5	12	B-M6F	4
HSR 25M1R HSR 25M1LR	40	48	83.9 103	35	35 50	M6×8	59.5 78.6	8	34.5	10	12	B-M6F	5.5
HSR 30M1R HSR 30M1LR	45	60	98.8 121.4	40	40 60	M8×10	70.4 93	8	38	10	12	B-M6F	7
HSR 35M1R HSR 35M1LR	55	70	112 137.4	50	50 72	M8×12	80.4 105.8	10	47.5	15	12	B-M6F	7.5


Note) The length L of the high temperature type LM Guide model HSR is longer than normal type of model HSR. (Dimension L_1 is the same.)

Model number coding

+1080L C₀ Contamination LM rail length Model number Type of Symbol Symbol for protection LM block for LM rail (in mm) No. of rails used accessory symbol (*1) jointed use on the same plane (*4) Symbol for high Radial clearance symbol (*2) Accuracy symbol (*3) No. of LM blocks Normal (No symbol) Normal grade (No Symbol)/High accuracy grade (H) temperature used on the same Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP) type LM Guide rail Light preload (C1) Medium preload (C0)

(*1) See contamination protection accessory on △1-352. (*2) See △1-90. (*3) See △1-95. (*4) See △1-35.


Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

·		LM	rail din	nensions			load ing			permis			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	2	1 _A		╅	(1) §	LM block	LM rail
W ₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	9.5	15	60	4.5×7.5×5.3	1240	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.2	1.5
20	12	18	60	6×9.5×8.5	1500	13.8 21.3		0.19 0.323	1.04 1.66	0.19 0.323	1.04 1.66	0.201 0.27	0.35 0.47	2.3
23	12.5	22	60	7×11×9	1500	19.9 27.2	-	0.307 0.529		0.307 0.529	1.71 2.74	0.344 0.459	0.59 0.75	3.3
28	16	26	80	9×14×12	1500	28 37.3		0.524 0.889		0.524 0.889	2.7 4.37	0.562 0.751	1.1 1.3	4.8
34	18	29	80	9×14×12	1500	37.3 50.2	-	0.782 1.32	3.93 6.35	0.782 1.32	3.93 6.35	0.905 1.2	1.6 2	6.6

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-200.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Model HSR-M1YR

	dir	Outer mensio	ns				LM blo	ck dim	ension	s			
Model No.	Height M	Width W	Length L	B ₁	В	С	s×ℓ	L ₁	К	N	E	Grease nipple	H₃
HSR 15M1YR	28	33.5	59.6	4.3	11.5	18	M4×5	38.8	23.3	8.3	5.5	PB1021B	3.5
HSR 20M1YR	30	43.5	76	4	11.5	25	M5×6	50.8	26	5	12	B-M6F	4
HSR 25M1YR	40	47.5	83.9	6	16	30	M6×6	59.5	34.5	10	12	B-M6F	5.5
HSR 30M1YR	45	59.5	98.8	8	16	40	M6×9	70.4	38	10	12	B-M6F	7
HSR 35M1YR	55	69.5	112	8	23	43	M8×10	80.4	47	15	12	B-M6F	7.5

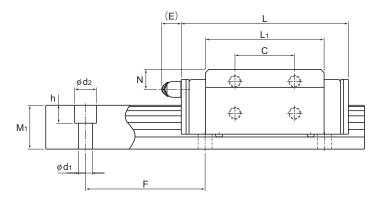
Note) The length L of the high temperature type LM Guide model HSR-YR is longer than normal type of model HSR-YR. (Dimension L_1 is the same.)

Model number coding

+1200L HSR25 YR Contamination Model number LM rail length Type of Symbol Symbol for protection LM block (in mm) for LM rail No. of rails used accessory jointed use on the same plane (*4)

Symbol for high temperature type LM Guide

No. of LM blocks used on the same


symbol (*1)

Normal (No symbol) Light preload (C1) Medium preload (C0)

Radial clearance symbol (*2) Accuracy symbol (*3) Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

		LM	rail din	nensions		Basic rat	load ing			permi			Ма	ISS
Width		Height	Pitch		Length*	С	C ₀	Δ (14			M∘	LM block	LM rail
W ₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks		kg	kg/m
15	24	15	60	4.5×7.5×5.3	1240	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.2	1.5
20	31.5	18	60	6×9.5×8.5	1500	13.8	23.8	0.19	1.04	0.19	1.04	0.201	0.35	2.3
23	35	22	60	7×11×9	1500	19.9	34.4	0.307	1.71	0.307	1.71	0.344	0.59	3.3
28	43.5	26	80	9×14×12	1500	37.3	62.5	0.524	2.7	0.524	2.7	0.562	1.3	4.8
34	51.5	29	80	9×14×12	1500	37.3	61.1	0.782	3.93	0.782	3.93	0.905	1.6	6.6

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-200.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model HSR-M1 variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

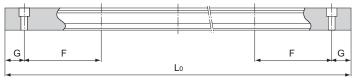
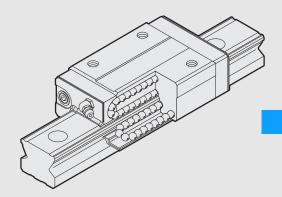


Table1 Standard Length and Maximum Length of the LM Rail for Model HSR-M1


Unit: mm

Model No.	HSR 15M1	HSR 20M1	HSR 25M1	HSR 30M1	HSR 35M1
LM rail standard length (L₀)	160 220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1240	220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1240 1360 1480	220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1240 1300 1360 1420 1480	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480
Standard pitch F	60	60	60	80	80
G	20	20	20	20	20
Max length	1240	1500	1500	1500	1500

Note1) The maximum length varies with accuracy grades. Contact THK for details.

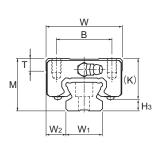
Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

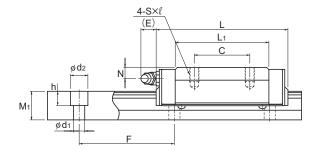
Note3) The values for HSR-M1 also apply to HSR-M1YR.

SR-M1

LM Guide

Product Specifications


Models SR-M1W and SR-M1V Models SR-M1TB and SR-M1SB	
Standard Length and Maximum Length of the LM Rail	B 1-206
Options The LM Block Dimension (Dimension L)	
with LaCS and Seals Attached	


□ Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features 1-263 Thermal Characteristics of LM Rail and LM Block Materials A1-263 Types and Features A1-264 Rated Loads in All Directions A1-265 Equivalent Load A1-265 Radial Clearance Standard...... A1-90 Accuracy Standards A1-95 Shoulder Height of the Mounting Base Error Allowance in the Parallelism between Two Rails A1-315 Error Allowance in Vertical Level between Two Rails 🔼 1-318

^{*} Please see the separate "A Technical Descriptions of the Products".

Models SR-M1W and SR-M1V

Model SR-M1W

	dii	Outer mensio	ns			ı	LM bloc	k dime	ensions	6			
Model No.	Height M	Width	Length L	В	С	s×ℓ	L ₁	Т	К	N	Е	Grease nipple	Н₃
SR 15M1W SR 15M1V	24	34	57 40.4	26	26 —	M4×7	39.5 22.9	6	19.5	6	5.5	PB1021B	4.5
SR 20M1W SR 20M1V	28	42	66.2 47.3	32	32 _	M5×8	46.7 27.8	7.5	22	6	12	B-M6F	6
SR 25M1W SR 25M1V	33	48	83 59.2	35	35 —	M6×9	59 35.2	8	26	7	12	B-M6F	7
SR 30M1W SR 30M1V	42	60	96.8 67.9	40	40 —	M8×12	69.3 40.4	9	32.5	8	12	B-M6F	9.5
SR 35M1W SR 35M1V	48	70	111 77.6	50	50 —	M8×12	79 45.7	13	36.5	8.5	12	B-M6F	11.5

Model number coding

SR30 M1 W 2 UU C0 +1160L Y P T - I

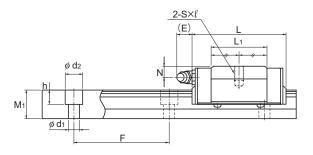
Model number Type of LM block Contamination protection accessory symbol (*1)

LM rail length (in mm)

Applied to only size 25 Symbol for LM rail jointed use

Symbol for No. of rails used on the same plane (*4)

Symbol for high temperature type LM Guide


No. of LM blocks used on the same rail

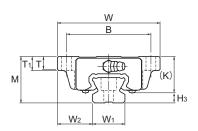
Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)

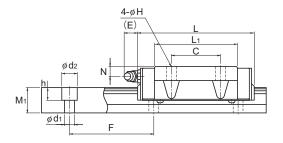
Accuracy symbol (*3)
Normal grade (No Symbol)/High accuracy grade (H)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

(*1) See contamination protection accessory on \$\textstyle{\textstyle{1}}\)1-352. (*2) See \$\textstyle{\textstyle{1}}\)1-90. (*3) See \$\textstyle{\textstyle{1}}\)1-95. (*4) See \$\textstyle{\textstyle{1}}\)1-352.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Model SR-M1V


Unit: mm


		LM	rail din	nensions		Basic rat	load ing			perminent kN			Ма	ISS
Width		Height	Pitch		Length*	С	C₀	2	1 _A		T' =	₩ Ç	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks		kg	kg/m
15	9.5	12.5	60	3.5×6×4.5	1240	9.51 5.39			0.516 0.224				0.2 0.12	1.2
20	11	15.5	60	6×9.5×8.5	1500				0.778 0.332			0.194 0.11	0.3 0.2	2.1
23	12.5	18	60	7×11×9	1500				1.52 0.649			0.355 0.201	0.4 0.3	2.7
28	16	23	80	7×11×9	1500	30 17.2		0.494 0.163		0.303 0.102	-	0.611 0.352	0.8 0.5	4.3
34	18	27.5	80	9×14×12	1500		77.2 44.1	0.74 0.259	-	0.454 0.161	-	1.01 0.576	1.2 0.8	6.4

Note1) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-206.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks in close contact.

Note2) The LM rail mounting hole of SR15 is for M3 screws as a standard (without Y indication). If you order the hole for M4 screws (with Y indication), contact THK.

Models SR-M1TB and SR-M1SB

Model SR-M1TB

	Outer	dimen	sions				l	_M blo	ck dim	ension	ıs			
Model No.	Height M	Width W	Length L	В	С	н	L ₁	Т	T 1	К	Z	E	Grease nipple	Нз
SR 15M1TB SR 15M1SB	24	52	57 40.4	41	26 —	4.5	39.5 22.9	6.1	7	19.5	6	5.5	PB1021B	4.5
SR 20M1TB SR 20M1SB	28	59	66.2 47.3	49	32 _	5.5	46.7 27.8	8	9	22	6	12	B-M6F	6
SR 25M1TB SR 25M1SB	33	73	83 59.2	60	35 —	7	59 35.2	9	10	26	7	12	B-M6F	7
SR 30M1TB SR 30M1SB	42	90	96.8 67.9	72	40 —	9	69.3 40.4	8.7	10	32.5	8	12	B-M6F	9.5
SR 35M1TB SR 35M1SB	48	100	111 77.6	82	50 —	9	79 45.7	11.2	13	36.5	8.5	12	B-M6F	11.5

Model number coding

SR30 M1 W 2 UU C0 +1000L Y P T - I

Model number

Type of LM block

Contamination protection accessory symbol (*1)

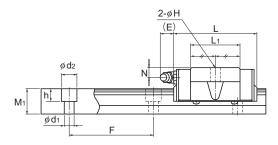
LM rail length (in mm)

Applied to only size 25 Symbol for LM rail jointed use

Symbol for No. of rails used on the same plane (*4)

Symbol for high temperature type LM Guide

No. of LM blocks used on the same rail


Radial clearance symbol (*2)
Normal (No symbol)
Light preload (C1)
Medium preload (C0)

Radial clearance symbol (*3)
Normal grade (No Sym
Precision grade (P)/
Ultra precision grade

Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on \$\textit{\textit{\textit{\textit{2}}}}\$ (*2) See \$\textit{\textit{\textit{4}}}\$ 1-90. (*3) See \$\textit{\textit{\textit{4}}}\$ 1-95. (*4) See \$\textit{\textit{\textit{4}}}\$ 1-95.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Model SR-M1SB

Unit: mm

		LM	rail din	nensions		Basic rat	load ing	Static permissible moment kN-m*					Mass	
Width		Height	Pitch		Length*	С	C₀	V (M _A		M _B		LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	18.5	12.5	60	3.5×6×4.5	1240	9.51 5.39			0.516 0.224				0.2 0.12	1.2
20	19.5	15.5	60	6×9.5×8.5	1500				0.778 0.332			0.194 0.11	0.3 0.2	2.1
23	25	18	60	7×11×9	1500				1.52 0.649			0.355 0.201	0.4 0.3	2.7
28	31	23	80	7×11×9	1500			0.494 0.163		0.303 0.102	-	0.611 0.352	0.8 0.5	4.3
34	33	27.5	80	9×14×12	1500	41.7 23.8		0.74 0.259	4.01 1.68	0.454 0.161	-	1.01 0.576	1.2 0.8	6.4

Note1) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-206.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other
Note2) The LM rail mounting hole of SR15 is for M3 screws as a standard (without Y indication). If you order the hole for M4 screws (with Y indication), contact THK.

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SR-M1 variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

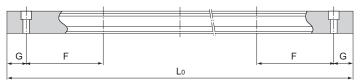
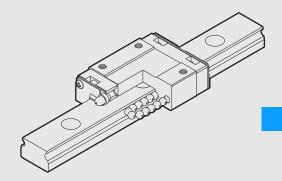



Table1 Standard Length and Maximum Length of the LM Rail for Model SR-M1

Unit: mm

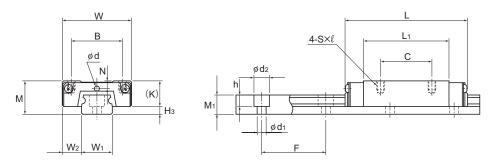
Model No.	SR 15M1	SR 20M1	SR 25M1	SR 30M1	SR 35M1
LM rail standard length (L _o)	160 220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1240	220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1180 1240 1300 1360 1420	220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1240 1300 1420 1480	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480
Standard pitch F	60	60	60	80	80
G	20	20	20	20	20
Max length	1240	1500	1500	1500	1500

Note1) The maximum length varies with accuracy grades. Contact THK for details. Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

RSR-M1

LM Guide

Product Specifications

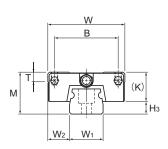

Dimensional Drawing, Dimensional Table Models RSR-M1, RSR-M1V and RSR-M1N Models RSR-M1WV and RSR-M1WN.	■ 1-208
Standard Length and Maximum Length of the LM RailStopper	■ 1-212
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached	B 1-241

▲ Technical Descriptions of the Products (Separate)

Technical Descriptions	
Structure and Features	A1-269
Thermal Characteristics of LM Rail	
and LM Block Materials	A1-269
Types and Features	A1-270
Rated Loads in All Directions	A1-271
Equivalent Load	A1-271
Service Life	A1-76
Radial Clearance Standard	A1-90
Accuracy Standards	A1-101
Shoulder Height of the Mounting Base	
and the Corner Radius	A1-314
Error Allowance in the Parallelism	
between Two Rails	A1-316
Error Allowance in Vertical Level	
between Two Rails	A1-319

^{*} Please see the separate "A Technical Descriptions of the Products".

Models RSR-M1K, RSR-M1V and RSR-M1N

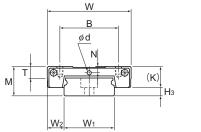


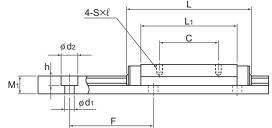
Models RSR9M1K/9M1N and RSR12M1V/M1N

		Outer nensio			LM block dimensions										
Model No.	Height M	Width W	Length L	В	С	s×ℓ	L ₁	Т	К	N	Е	Greas- ing hole d	Grease nipple	Н₃	
RSR 9M1K RSR 9M1N	10	20	30.8 41	15	10 16	M3×3	19.8 29.8	_	7.8	_	_	1	_	2.2	
RSR 12M1V RSR 12M1N	13	27	35 47.7	20	15 20	M3×3.5	20.6 33.3	_	10	3	_	2	_	3	
RSR 15M1V RSR 15M1N	16	32	43 61	25	20 25	M3×4	25.7 43.5	_	12	3.5	3.6 3.7	-	PB107	4	
RSR 20M1V RSR 20M1N	25	46	66.5 86.3	38	38	M4×6	45.2 65	5.7	17.5	5	6.4	_	A-M6F	7.5	

Model number coding UU C1 +230L RSR15 Contamination Type of LM block LM rail length Symbol for Symbol for Model number protection (in mm) LM rail No. of rails used accessory symbol (*1) jointed use on the same plane (*4) Symbol for high No. of LM blocks Radial clearance symbol (*2) used on the same temperature Accuracy symbol (*3) Normal (No symbol) type LM Guide Normal grade (No Symbol)/High accuracy grade (H) Light preload (C1) Precision grade (P) (*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-90. (*3) See ▲1-101. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

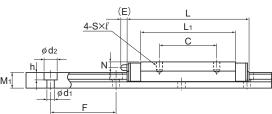

Models RSR15 and 20M1V/M1N


Unit: mm

	L	M rail	dimer	nsions		Basic load rating			Static permissible moment N-m*					ISS
Width		Height	Pitch		Length*				1s >	(j) ×	LM block	LM rail		
W_1	W_2	M ₁	F	$d_1{\times}d_2{\times}h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
9 0 -0.02	5.5	5.5	20	3.5×6×3.3	1000	1.47 2.6	2.25 3.96	7.34 18.4	43.3 97	7.34 18.4	43.3 97	10.4 18.4	0.018 0.027	0.32
12 ⁰ -0.025	7.5	7.5	25	3.5×6×4.5	1340	2.65 4.3	4.02 6.65	11.4 28.9	74.9 163	10.1 25.5	67.7 145	19.2 31.8	0.037 0.055	0.58
15 ⁰ _{-0.025}	8.5	9.5	40	3.5×6×4.5	1430	4.41 7.16		23.7 63.1	149 330	21.1 55.6	135 293	38.8 63	0.069 0.093	0.925
20 0 -0.03	13	15	60	6×9.5×8.5	1800	8.82 14.2		75.4 171	435 897	66.7 151	389 795	96.6 157	0.245 0.337	1.95

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-212.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models RSR-M1WV and RSR-M1WN


Models RSR9 and 12M1WV/M1WN

		Outer nension												
Model No.	Height M	Width W	Length	В	С	s×ℓ	L ₁	Т	K	N	Е	Greas- ing hole d	Grease nipple	H ₃
RSR 9M1WV RSR 9M1WN	12	30	39 50.7	21 23	12 24	M2.6×3 M3×3	27 38.7	_	7.8	2	_	1.6	_	4.2
RSR 12M1WV RSR 12M1WN	14	40	44.5 59.5	28	15 28	M3×3.5	30.9 45.9	4.5	10	3	_	2	-	4
RSR 15M1WV RSR 15M1WN	16	60	55.5 74.5	45	20 35	M4×4.5	38.9 57.9	5.6	12	3.5	3	_	PB107	4

Model number coding **RSR12** UU C1 +310L **M1** WN Type of Contamination LM block protection LM rail length Symbol for LM rail Model number jointed use (in mm) accessory ssory col (*1) Radial clearance symbol (*2) Normal (No symbol) Normal (No symbol) Symbol for high symbol (*1) No. of LM blocks used on the same temperature type LM Guide Normal (No symbol) Light preload (C1)

(*1) See contamination protection accessory on \$\mathbb{A}\$1-352. (*2) See \$\mathbb{A}\$1-90. (*3) See \$\mathbb{A}\$1-101.

Models RSR15M1WV/M1WN

Unit: mm

		LM	rail dii	mensi	ons		Basic load rating			Static permissible moment N-m*					ISS
Width			Height	Pitch		Length*	С	C ₀		∏ ✓ ₹			(1) ×	LM block	LM rail
W ₁	W_2	Wз	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks		Double blocks	1 block	kg	kg/m
18 0 -0.05	6	_	7.5	30	3.5×6×4.5	1000	2.45 3.52	3.92 5.37	16 31	92.9 161	16 31	92.9 161		0.035 0.051	1.08
24 0 -0.05	8	_	8.5	40	4.5×8×4.5	1340	4.02 5.96		24.5 53.9	138 274	21.7 47.3	123 242		0.075 0.101	1.5
42 ⁰ _{-0.05}	9	23	9.5	40	4.5×8×4.5	1430	6.66 9.91	9.8 14.9	50.3 110	278 555	44.4 97.3	248 490	168 255	0.17 0.21	3

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-212.)
Static permissible moment*: 1 block: static permissible moment value with 1 LM block
Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard and maximum lengths of the RSR M1 model rail.

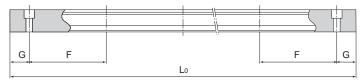


Table1 Standard Length and Maximum Length of the LM Rail for Model RSR-M1

Unit: mm

Model No.	RSR 9M1	RSR 12M1	RSR 15M1	RSR 20M1	RSR 9M1W	RSR 12M1W	RSR 15M1W
LM rail standard length (L ₀)	55 75 95 115 135 155 175 195 275 375	70 95 120 145 170 195 220 245 270 320 370 470 570	70 110 150 190 230 270 310 350 390 430 470 550 670 870	220 280 340 460 640 880 1000	50 80 110 140 170 200 260 290 320	70 110 150 190 230 270 310 390 470 550	110 150 190 230 270 310 430 550 670 790
Standard pitch F	20	25	40	60	30	40	40
G	7.5	10	15	20	10	15	15
Max length	1000	1340	1430	1800	1000	1430	1800

Note) The maximum length varies with accuracy grades. Contact THK for details.

Stopper

In models RSR-M1/RSR-M1W, the balls fall out if the LM block comes off the LM rail.

For this reason, they are delivered with a stopper fitted to prevent the LM block coming off the rail. If you remove the stopper when using the product, take care to ensure that overrun does not occur.

Table2 Model RSR-M1/RSR-M1W stopper (C type) specification table

Unit: mm

Model No.	Α	В	С
9	13	6	9.5
12	16	7	12.5
15	19	7	14.5
20	25	7	20.0
9W	23	7	11.5
12W	29	7	13.5
15W	46	7	14.5

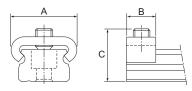
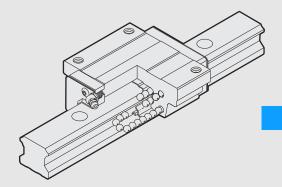



Fig.1 Model RSR-M1/RSR-M1W stopper (C type)

HSR-M2

LM Guide

Product Specifications


•	
Dimensional Drawing, Dimensional Table Model HSR-M2A	■ 1-214
Standard Length and Maximum Length of the LM Rail	■ 1-216
Options	B 1-235
with LaCS and Seals Attached	B 1-242

A Technical Descriptions of the Products (Separate)

Technical Descriptions Structure and Features 🔼 1-275 Types and Features 🔼 1-275 Rated Loads in All Directions A1-275 Equivalent Load A1-275 Radial Clearance Standard A1-91 Accuracy Standards A1-95 Shoulder Height of the Mounting Base and the Corner Radius A1-310 Error Allowance in the Parallelism between Two Rails A1-315 Error Allowance in Vertical Level between Two Rails 41-318

^{*} Please see the separate "A Technical Descriptions of the Products".

Model HSR-M2A

	Outer	r dimer	nsions											
Model No.	Height M	Width	Length	В	С	S	L ₁	т	T ₁	К	N	E	Grease nipple	H ₃
HSR 15M2A	24	47	56.6	38	30	M5	38.8	6.5	11	19.3	4.3	5.5	PB1021B	3.5
HSR 20M2A	30	63	74	53	40	M6	50.8	9.5	10	26	5	12	B-M6F	4
HSR 25M2A	36	70	83.1	57	45	M8	59.5	11	16	30.5	6	12	B-M6F	5.5

Note) For the high corrosion resistance type LM Guide, a stainless steel end plate is optionally available. (symbol···I)

Model number coding

HSR20M2 A 2 UU C1 I +820L P T - II

Model number (high corrosion resistance type LM Guide) Type of LM block Contamination protection accessory symbol (*1)

End plate is made of stainless steel

LM rail length (in mm)

Symbol Symbol Symbol No. of the symbol on the symbol Symbol No. of the symbol No. of the symbol symb

Symbol for No. of rails used on the same plane (*4)

No. of LM blocks Radial clearance syrused on the same rail Normal (No symbol)

Radial clearance symbol (*2) Accuracy symbol (*3) Normal (No symbol) Normal grade (No Syr Light preload (C1) Precision grade (P)

Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP)

(*1) See contamination protection accessory on △1-352. (*2) See △1-91. (*3) See △1-95. (*4) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Unit: mm

		LM	rail dir	nensions			sic rating			permis			Ma	ISS
Width		Height	Pitch		Length*	С	C ₀	N	-			(1) §	LM block	LM rail
W₁ ±0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
15	16	15	60	4.5×7.5×5.3	1000	2.33	2.03	12.3	70.3	12.3	70.3	10.8	0.2	1.5
20	21.5	18	60	6×9.5×8.5	1000	3.86	3.57	29	160	29	160	26.5	0.35	2.3
23	23.5	22	60	7×11×9	1000	5.57	5.16	46.9	261	46.9	261	45.1	0.59	3.3

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 11-216.)

The basic load rating of the high corrosion resistance type LM Guide is smaller than ordinary stainless steel LM Guides.

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model HSR-M2 variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

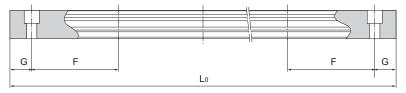
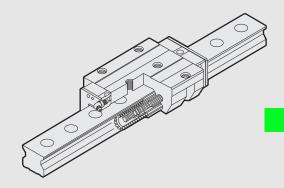



Table1 Standard Length and Maximum Length of the LM Rail for Model HSR-M2

Unit: mm

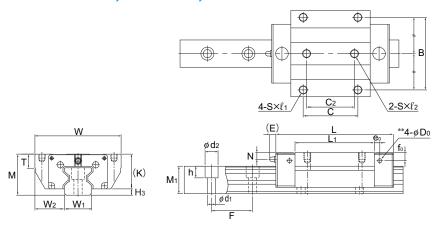
Model No.	HSR 15M2	HSR 20M2	HSR 25M2
LM rail standard length (L ₀)	160 280 460 640	280 460 640 820	280 460 640 820 1000
Standard pitch F	60	60	60
G	20	20	20
Max length	1000	1000	1000

Note1) The maximum length varies with accuracy grades. Contact THK for details. Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

SRG

Caged Roller LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Models SRG-A, SRG-LA, SRG-C and SRG-LC Model SRG-LC Models SRG-V, SRG-LV, SRG-R and SRG-LR	■ 1-218 ■ 1-220 ■ 1-222
Standard Length and Maximum Length of the LM Rail	■ 1-224
Options The LM Block Dimension (Dimension L)	■ 1-235
with LaCS and Seals Attached Incremental Dimension with Grease Nipple	■ 1-242
(When LaCS is Attached) LM Block Dimension (Dimension L)	■ 1-244
with LiCS Attached	■ 1-245
(When LiCS is Attached)	B1-246
Dedicated Bellows JSRG for Model SRG	B 1-258
Cap C	B 1-262
Cap GC	B 1-263
LM Block Dimension (Dimension L) with QZ Attached	5 4 000
	B1-266
Greasing Hole for Model SRG	■ 1-270

▲ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models SRG-A, SRG-LA, SRG-C and SRG-LC

Models SRG15A and 20A/LA

		Oute nensi								ı	_M bl	ock o	dimer	nsions	s					
Model No.	Height M	Width	Length	В	С	C ₂	s	н	ℓ_1	l ₂	Lı	Т	T 1	К	Ν	Е	e₀	fo	D₀	Grease nipple
SRG 15A	24	47	69.2	38	30	26	M5	_	8	7.5	45	7		20	4	4.5	4	6	2.9	PB107
SRG 20A SRG 20LA	30	63	86.2 106.2	53	40	35	M6	_	10	9	58 78	10	_	25.4	5	4.5	4	6	2.9	PB107
SRG 25C SRG 25LC	36	70	95.5 115.1	57	45	40	M8	6.8	_	_	65.5 85.1	9.5	10	31.5	5.5	12	6	6.2	5.2	B-M6F
SRG 30C SRG 30LC	42	90	111 135	72	52	44	M10	8.5	-	_	75 99	12	14	37	6.5	12	6	6.2	5.2	B-M6F
SRG 35C SRG 35LC	48	100	125 155	82	62	52	M10	8.5	_	_	82.2 112.2	11.5	10	42	6.5	12	6	6	5.2	B-M6F
SRG 45C SRG 45LC	60	120	155 190	100	80	60	M12	10.5	_	_	107 142	14.5	15	52	10	16	7	7	5.2	B-PT1/8
SRG 55C SRG 55LC	70	140	185 235	116	95	70	M14	12.5	-	_	129.2 179.2	17.5	18	60	12	16	9	8.5	5.2	B-PT1/8
SRG 65LC	90	170	303	142	110	82	M16	14.5	_	_	229.8	19.5	20	78.5	17	16	9	13.5	5.2	B-PT1/8

Model number coding

QZ KKHH C0 +1200L SRG45 Model With Q7 Type of Contamination LM rail length Symbol for No. of number LM block Lubricator protection (in mm) rails used on the accessory symbol (*1) same plane (*4) Symbol for LM No. of LM blocks Radial clearance symbol (*2) rail jointed use

used on the same rail Normal (No symbol)

Light preload (C1)

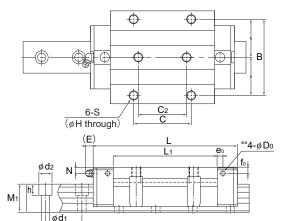
Accuracy symbol (*3)

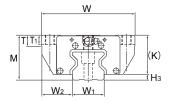
Previous grade (DVS

Light preload (C1)
Medium preload (C0)

Medium preload (C0)

Medium preload (C1)


Verecision grade (P)/Super precision grade (SP)


Ultra precision grade (UP)

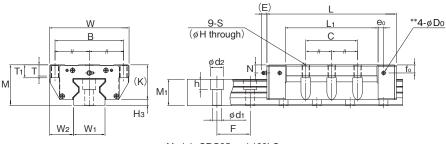
(*1) See contamination protection accessory on △1-352. (*2) See △1-91. (*3) See △1-95. (*4) See △1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Unit: mm

			LM	rail dir	mensions		Ba load i				permi: nent kN			Ма	ISS
	Width		Height	Pitch		Length*	С	Co	2	 	1		(1) §	LM block	LM rail
Нз	W ₁ 0 -0.05	W_2	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
4	15	16	15.5	30	4.5×7.5×5.3	2500	11.3	25.8	0.21	1.24	0.21	1.24	0.24	0.20	1.58
4.6	20	21.5	20	30	6×9.5×8.5	3000	21 26.7	46.9 63.8	0.48 0.88	2.74 4.49	0.48 0.88	2.74 4.49	0.58 0.79	0.42 0.57	2.58
4.5	23	23.5	23	30	7×11×9	3000	27.9 34.2	57.5 75	0.641 1.07	3.7 5.74	0.641 1.07	3.7 5.74	0.795 1.03	0.7 0.9	3.6
5	28	31	26	40	9×14×12	3000	39.3 48.3	82.5 108	1.02 1.76	6.21 9.73	1.02 1.76	6.21 9.73	1.47 1.92	1.2 1.6	4.4
6	34	33	30	40	9×14×12	3000	59.1 76	119 165	1.66 3.13	10.1 17	1.66 3.13	10.1 17	2.39 3.31	1.9 2.4	6.9
8	45	37.5	37	52.5	14×20×17	3090	91.9 115	192 256	3.49 6.13	20 32.2	3.49 6.13	20 32.2	4.98 6.64	3.7 4.5	11.6
10	53	43.5	43	60	16×23×20	3060	131 167	266 366	5.82 10.8	33 57	5.82 10.8	33 57	8.19 11.2	5.9 7.8	15.8
11.5	63	53.5	54	75	18×26×22	3000	278	599	22.7	120	22.7	120	22.1	16.4	23.7


Note) The greasing hole on the top face and the pilot hole of the side nipple** are not drilled through in order to prevent foreign material from entering the block.

See 1-270 for details.

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks in close contact.

Model SRG-LC

Models SRG85 and 100LC

			Outer nension							LM	block	k dime	ension	s				
N	Model No.	Height M	Width	Length	В	С	S	Н	L ₁	т	T ₁	К	Ν	Е	e _o	fo	Do	Grease nipple
SF	RG 85LC	110	215	350	185	140	M20	17.8	250.8	30	35	94	22	16	15	22	8.2	B-PT1/8
SF	RG 100LC	120	250	395	220	200	M20	17.8	280.2	35	38	104	23	16	15	23	8.2	B-PT1/4

Model number coding

KK C0 +2610L

Model Type of LM block number

Contamination protection accessory symbol (*1)

LM rail length (in mm)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)

Symbol for No. of rails used on the same plane (*4)

Symbol for LM rail jointed use

Accuracy symbol (*3)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-91. (*3) See ▲1-95. (*4) See ▲1-35.

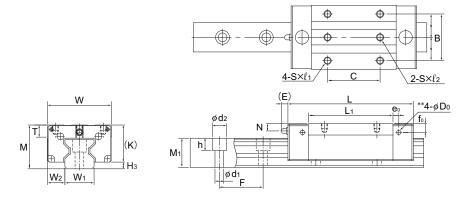
Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

														UI	III. IIIIII	
			LM	rail dir	nensions		Basic rat	load			permis			Ма	ISS	
	Width		Height	Pitch		Length*	С	C°	2 \	 	2(T' =	(j) ×	LM block	LM rail	
Н₃	W₁ 0 -0.05	W ₂	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m	
16	85	65	71	90	24×35×28	3000	497	990	45.3	239	45.3	239	51.9	26.2	35.7	
16	100	75	77	105	26×39×32	3000	601	1170	60	319	60	319	72.3	37.6	46.8	

Note) The greasing hole on the top face and the pilot hole of the side nipple" are not drilled through in order to prevent foreign material from entering the block.

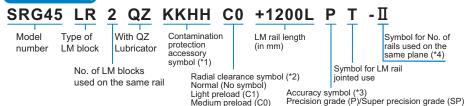
See 1-270 for details.


The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-224)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks in close contact.

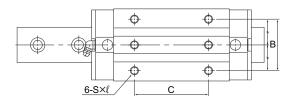
The removing/mounting jig is not provided as standard. When desiring to use it, contact THK.

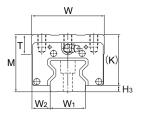

Models SRG-V, SRG-LV, SRG-R and SRG-LR

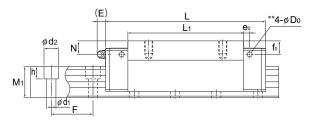
Models SRG15V and 20V/LV

	dir	Oute nensi								LM	block	dime	nsions	5				
Model No.	Height M	Width W	Length L	В	С	S	l	l ₁	ℓ_2	Lı	т	К	Ν	E	e _o	fo	Do	Grease nipple
SRG 15V	24	34	69.2	26	26	M4	_	5	7.5	45	6	20	4	4.5	4	6	2.9	PB107
SRG 20V SRG 20LV	30	44	86.2 106.2	32	36 50	M5	_	7	9	58 78	8	25.4	5	4.5	4	6	2.9	PB107
SRG 25R SRG 25LR	40	48	95.5 115.1	35	35 50	M6	9	_	_	65.5 85.1	9.5	35.5	9.5	12	6	10.4	5.2	B-M6F
SRG 30R SRG 30LR	45	60	111 135	40	40 60	M8	10	_	_	75 99	12	40	9.5	12	6	9.2	5.2	B-M6F
SRG 35R SRG 35LR	55	70	125 155	50	50 72	M8	12	_	_	82.2 112.2	18.5	49	13.5	12	6	13	5.2	B-M6F
SRG 45R SRG 45LR	70	86	155 190	60	60 80	M10	20	_	_	107 142	24.5	62	20	16	7	17	5.2	B-PT1/8
SRG 55R SRG 55LR	80	100	185 235	75	75 95	M12	18	_	_	129.2 179.2	27.5	70	22	16	9	18.5	5.2	B-PT1/8
SRG 65LV	90	126	303	76	120	M16	20	_	_	229.8	19.5	78.5	17	16	9	13.5	5.2	B-PT1/8

Model number coding




(*1) See contamination protection accessory on △1-352. (*2) See △1-91. (*3) See △1-95. (*4) See △1-35.


Ultra precision grade (UP)

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Models SRG25 to 65R/LR/LV

Unit: mm

			LM	rail dir	nensions			sic ating			permi: nent kN			Ма	ISS
	Width		Height	Pitch		Length*	С	Co	2	1 _A	1	T' =	(1) §	LM block	LM rail
Нз	W ₁ 0 -0.05	W_2	Мı	F	$d_1 \! \times \! d_2 \! \times \! h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks		kg	kg/m
4	15	9.5	15.5	30	$4.5 \times 7.5 \times 5.3$	2500	11.3	25.8	0.21	1.24	0.21	1.24	0.24	0.15	1.58
4.6	20	12	20	30	6×9.5×8.5	3000	21 26.7	46.9 63.8	0.48 0.88	2.74 4.49	0.48 0.88	2.74 4.49	0.58 0.79	0.28 0.38	2.58
4.5	23	12.5	23	30	7×11×9	3000	27.9 34.2	57.5 75	0.641 1.07	3.7 5.74	0.641 1.07	3.7 5.74	0.795 1.03	0.6 0.8	3.6
5	28	16	26	40	9×14×12	3000	39.3 48.3	82.5 108	1.02 1.76	6.21 9.73	1.02 1.76	6.21 9.73	1.47 1.92	0.9 1.2	4.4
6	34	18	30	40	9×14×12	3000	59.1 76	119 165	1.66 3.13	10.1 17	1.66 3.13	10.1 17	2.39 3.31	1.6 2.1	6.9
8	45	20.5	37	52.5	14×20×17	3090	91.9 115	192 256	3.49 6.13	20 32.2	3.49 6.13	20 32.2	4.98 6.64	3.2 4.1	11.6
10	53	23.5	43	60	16×23×20	3060	131 167	266 366	5.82 10.8	33 57	5.82 10.8	33 57	8.19 11.2	5 6.9	15.8
11.5	63	31.5	54	75	18×26×22	3000	278	599	22.7	120	22.7	120	22.1	12.1	23.7

Note) The greasing hole on the top face and the pilot hole of the side nipple** are not drilled through in order to prevent foreign material from entering the block.

See 1-270 for details.

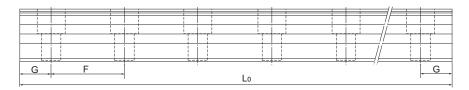
The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-224.)

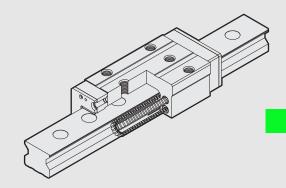
Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SRG variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.




Table1 Standard Length and Maximum Length of the LM Rail for Model SRG

Unit: mm

Model No.	SRG 15	SRG 20	SRG 25	SRG 30	SRG 35	SRG 45	SRG 55	SRG 65	SRG 85	SRG 100
LM rail standard length	160 220 280 340 4400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1360 1480 1600 2080 2200	220 280 340 400 460 520 580 640 700 760 820 940 1000 1120 1180 1240 1300 1440 1480 1540 1600 1720 1840 2080 2080 2200 2320 2440	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1560 1640 1720 1800 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 680 760 840 920 1000 1080 1160 1240 1320 1400 1560 1640 1720 1800 1960 2040 2200 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620	1530 1890 2250 2610	1340 1760 2180 2600
Standard pitch F	30	30	30	40	40	52.5	60	75	90	105
G	20	20	20	20	20	22.5	30	35	45	40
Max length	2500	3000	3000	3000	3000	3090	3060	3000	3000	3000

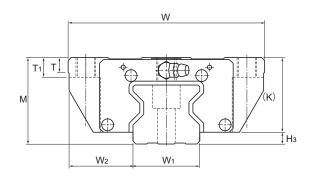
Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

SRN

Caged Roller LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Models SRN-C and SRN-LC Models SRN-R and SRN-LR	■ 1-226 ■ 1-228
Standard Length and Maximum Length of the LM Rail	■ 1-230
Options The LM Block Dimension (Dimension L) with LaCS and Seals Attached Cap C Cap GC LM Block Dimension (Dimension L) with QZ Attached	E 1-235 E 1-242 E 1-262 E 1-263
Greasing Hole for Model SRN	■ 1-271

□ Technical Descriptions of the Products (Separate)

^{*} Please see the separate "A Technical Descriptions of the Products".

Models SRN-C and SRN-LC

		Oute nensi							L	.M blo	ock d	imen	sions	5					
Model No.	Height M	Width	Length	В	O	C ₂	S	Н	L ₁	Т	T 1	К	N	Е	e _o	fo	D ₀	Grease nipple	Н₃
SRN 35C SRN 35LC	44	100	125 155	82	62	52	M10	8.5	82.2 112.2	7.5	10	38	6.5	12	8	6.5	5.2	B-M6F	6
SRN 45C SRN 45LC	52	120	155 190	100	80	60	M12	10.5	107 142	7.5	15	45	7	12	8.5	7	5.2	B-M6F	7
SRN 55C SRN 55LC	63	140	185 235	116	95	70	M14	12.5	129 179.2	10.5	18	53	8	16	10	8	5.2	PT1/8	10
SRN 65LC	75	170	303	142	110	82	M16	14.5	229.8	19.5	20	65	14	16	9	11	5.2	PT1/8	11.5

Model number coding

SRN45 C 2 KK C0 +1160L P T - II

Model Type of number LM block

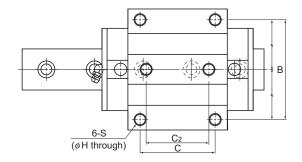
Contamination protection accessory symbol (*1)

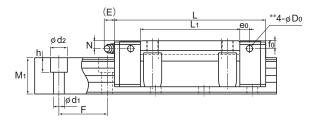
LM rail length (in mm)

Symbol for No. of rails used on the same plane (*4)

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)


Symbol for LM rail jointed use


Accuracy symbol (*3)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

(*1) See contamination protection accessory on A1-352. (*2) See A1-91. (*3) See A1-95. (*4) See A1-35.

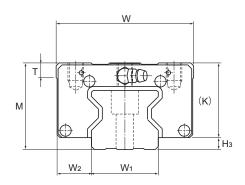
(1) See Contamination protection accessory on M1-352. (2) See M1-31. (3) See M1-35. (4) See M1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Unit: mm

		LM	rail dir	mensions			sic rating			permi: nent kN			Ма	ISS
Width		Height	Pitch		Length*	С	Co	2 \	<u></u> ✓ ►	2	∰✓⋷	× (□	LM block	LM rail
W ₁ 0 -0.05	W_2	M₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks		Double blocks		kg	kg/m
34	33	30	40	9×14×12	3000	59.1 76	119 165	1.66 3.13	10.1 17	1.66 3.13	10.1 17	2.39 3.31	1.6 2	6.9
45	37.5	36	52.5	14×20×17	3090	91.9 115	192 256	3.49 6.13	20 32.2	3.49 6.13	20 32.2	4.98 6.64	3 3.6	11.3
53	43.5	43	60	16×23×20	3060	131 167	266 366	5.82 10.8	33 57	5.82 10.8	33 57	8.19 11.2	4.9 6.4	15.8
63	53.5	49	75	18×26×22	3000	278	599	22.7	120	22.7	120	22.1	12.7	21.3

Note) The greasing hole on the top face and the pilot hole of the side nipple** are not drilled through in order to prevent foreign material from entering the block.


See 11-271 for details.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-230.)

Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Models SRN-R and SRN-LR

	dir	Oute nensi						LM bl	ock d	imens	sions					
Model No.	Height M	Width	Length L	В	С	s×ℓ	L ₁	Т	К	Z	E	e _o	fo	D₀	Grease nipple	Н₃
SRN 35R SRN 35LR	44	70	125 155	50	50 72	M8×9	82.2 112.2	7.5	38	6.5	12	8	6.5	5.2	B-M6F	6
SRN 45R SRN 45LR	52	86	155 190	60	60 80	M10×11	107 142	7.5	45	7	12	8.5	7	5.2	B-M6F	7
SRN 55R SRN 55LR	63	100	185 235	75	75 95	M12×13	129 179.2	10.5	53	8	16	10	8	5.2	PT1/8	10
SRN 65LR	75	126	303	76	120	M16×16	229.8	19.5	65	14	16	9	11	5.2	PT1/8	11.5

Model number coding

SRN45 LR 2 KK C0 +1200L P T - II

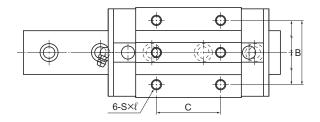
Model Type of number LM block Contamination protection accessory symbol (*1)

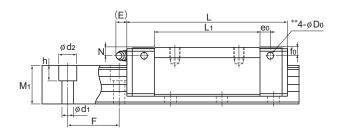
LM rail length (in mm)

No. of rails used on the same plane (*4)

Symbol for LM rail jointed use

No. of LM blocks used on the same rail


Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)


Accuracy symbol (*3)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

Symbol for

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-91. (*3) See ▲1-95. (*4) See ▲1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Unit: mm

		LM	rail dir	mensions		Ba load i	sic rating			permi: nent kN			Ма	ISS
Width		Height	Pitch		Length*	С	Co	2 \ [_ √	2	█▘▀	⊴́ (j)	LM block	LM rail
W ₁ 0 -0.05	W_2	M₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks		kg	kg/m
34	18	30	40	9×14×12	3000	59.1 76	119 165	1.66 3.13	10.1 17	1.66 3.13	10.1 17	2.39 3.31	1.1 1.4	6.9
45	20.5	36	52.5	14×20×17	3090	91.9 115	192 256	3.49 6.13	20 32.2	3.49 6.13	20 32.2	4.98 6.64	1.9 2.5	11.3
53	23.5	43	60	16×23×20	3060	131 167	266 366	5.82 10.8	33 57	5.82 10.8	33 57	8.19 11.2	3.2 4.5	15.8
63	31.5	49	75	18×26×22	3000	278	599	22.7	120	22.7	120	22.1	9.4	21.3

Note) The greasing hole on the top face and the pilot hole of the side nipple** are not drilled through in order to prevent foreign material from entering the block.

See 1-271 for details.

See \$1-271 for details.

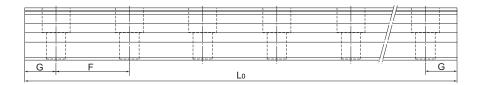
The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See \$1-230.)

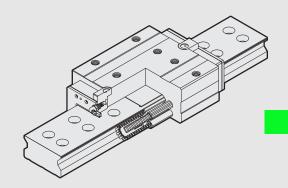
Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SRN variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details. For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.




Table1 Standard Length and Maximum Length of the LM Rail for Model SRN

Unit: mm

Model No.	SRN 35	SRN 45	SRN 55	SRN 65
LM rail standard length (L₀)	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620
Standard pitch F	40	52.5	60	75
G	20	22.5	30	35
Max length	3000	3090	3060	3000

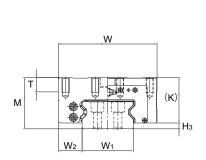
Note1) The maximum length varies with accuracy grades. Contact THK for details.

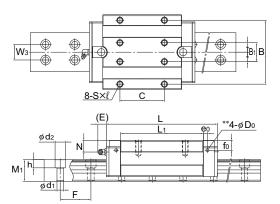
Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

SRW

Caged Roller LM Guide

Product Specifications


Dimensional Drawing, Dimensional Table Model SRW-LR	■ 1-232
Standard Length and Maximum Length of the LM Rail	■ 1-234
Options	E 1-235 E 1-242 E 1-259 E 1-262 E 1-263
with QZ Attached	■ 1-266 ■ 1-272


□ Technical Descriptions of the Products (Separate)

Technical DescriptionsStructure and Features\$\text{1-295}\$Types and Features\$\text{1-296}\$Rated Loads in All Directions\$\text{21-296}\$Equivalent Load\$\text{21-297}\$Service Life\$\text{21-76}\$Radial Clearance\$\text{21-91}\$Accuracy Standards\$\text{21-103}\$Shoulder Height of the Mounting Base

^{*} Please see the separate "A Technical Descriptions of the Products".

Model SRW-LR

Models SRW70 to 100LR

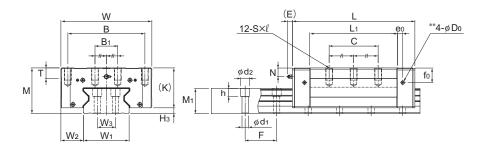
		Outer nension						LM	l bloc	k dim	ensio	ns					
Model No.	Height M	Width	Length	В	B₁	С	s×ℓ	Lı	Т	к	N	Е	e ₀	fo	D₀	Grease nipple	Н₃
SRW 70LR	70	135	190	115	34	80	M10×20	142	20	62	20	16	7	17	5.2	B-PT1/8	8
SRW 85LR	80	165	235	140	40	95	M12×19	179.2	28	70	22	16	9	18.5	5.2	B-PT1/8	10
SRW 100LR	100	200	303	172	50	110	M14×20	229.8	20	88.5	27	16	9	23.5	5.2	B-PT1/8	11.5
SRW 130LR	130	260	350	220	65	140	M20×35	250.8	30	114	25	16	15	42	8.2	B-PT1/8	16
SRW 150LR	150	300	395	260	75	200	M20×40	280.2	35	134	28.8	16	15	53	8.2	B-PT1/8	16

Model number coding

SRW70LR 2 QZ KKHH C0 +1200L P T -II

Model number

With QZ Lubricator Contamination protection accessory symbol (*1)


LM rail length (in mm) Symbol for No. of rails used on the same plane (*4)
Symbol for LM rail

No. of LM blocks used on the same rail

Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)

Accuracy symbol (*3)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

(*1) See contamination protection accessory on ▲1-352. (*2) See ▲1-91. (*3) See ▲1-103. (*4) See ▲1-35.

Models SRW130 and 150LR

Unit: mm

		L	.M rai	l dime	ensions		Ba load i				permis nent kN			Ма	ISS
Width			Height	Pitch		Length	С	C ₀	2	~	2		M° C□	LM block	LM rail
W ₁ 0 -0.05	W_2	Wз	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN	1 block	Double blocks	1 block	Double blocks	1 block	kg	kg/m
70	32.5	28	37	52.5	11×17.5×14	3090	115	256	6.13	32.2	6.13	32.2	10.2	6.3	18.6
85	40	32	43	60	14×20×17	3060	167	366	10.8	57	10.8	57	17.5	11.0	26.7
100	50	38	54	75	16×23×20	3000	278	599	22.7	120	22.7	120	33.9	21.6	35.9
130	65	52	71	90	18×26×22	3000	497	990	45.3	239	45.3	239	74.2	41.7	61.0
150	75	60	77	105	24×35×28	3000	601	1170	60	319	60	319	101.6	65.1	74.4

Note) 1. Model SRW is attached with "SS" as standard.

- 2. This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

 3. For the standard LM rail length, see Table1 on 1-234.
- 4. The greasing hole on the top face and the pilot hole of the side nipple** are not drilled through in order to prevent foreign material from entering the block. For details, see 11-272.
- 5. The removing/mounting jig is not provided as standard. When desiring to use it, contact THK.

The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See 1-234.) Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model SRW variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used.

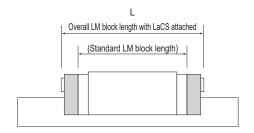
For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

If desiring connected use of this model, be sure to indicate the overall length so that we can manufacture the product without leaving a level difference in the joint.

Table1 Standard Length and Maximum Length of the LM Rail for Model SRW

Unit: mm

Model No.	SRW 70	SRW 85	SRW 100	SRW 130	SRW 150
LM rail standard length (L₀)	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620	1530 1890 2250 2610	1340 1760 2180 2600
Standard pitch F	52.5	60	75	90	105
G	22.5	30	35	45	40
Max length	3090	3060	3000	3000	3000


Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.

LM Guide Options

Dimensions of Each Model with an Option Attached

The LM Block Dimension (Dimension L) with LaCS and Seals Attached

Unit: mm

							L				
	Model No.	Standard overall length	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
	15C/V/R	64.4	64.4	64.4	69.8	66.8	72.2	78.6	84	79.8	85.2
	15LC/LV	79.4	79.4	79.4	84.8	81.8	87.2	93.6	99	94.8	100.2
	20C/V	79	79	79	85.4	83	89.4	93.6	100	96	102.4
	20LC/LV	98	98	98	104.4	102	108.4	112.6	119	115	121.4
	25C/V/R	92	92	92	101.6	100.4	107.6	112	119.2	114.4	121.6
	25LC/LV/LR	109	109	109	118.6	117.4	124.6	129	136.2	131.4	138.6
	30C/V/R	106	106	106	116	113.8	122.4	129.4	138	131.8	140.4
SHS	30LC/LV/LR	131	131	131	141	138.8	147.4	154.4	163	156.8	165.4
303	35C/V/R	122	122	122	134.8	132.4	142.2	148	157.8	150.4	160.2
	35LC/LV/LR	152	152	152	164.8	162.4	172.2	178	187.8	180.4	190.2
	45C/V/R	140	140	140	152.8	151.2	161	169	178.8	172.2	182
	45LC/LV/LR	174	174	174	186.8	185.2	195	203	212.8	206.2	216
	55C/V/R	171	171	171	186.6	184.2	195.4	202	213.2	205.2	216.4
	55LC/LV/LR	213	213	213	228.6	226.2	237.4	244	255.2	247.2	258.4
	65C/V	221	221	221	238.6	236.2	248.6	258	270.4	261.2	273.6
	65LC/LV	272	272	272	289.6	287.2	299.6	309	321.4	312.2	324.6
	15XVY	40.3	40.3	40.3	47.3	44.9	50.7	59.5	65.3	60.7	66.5
	15XWY/XTBY	56.9	56.9	56.9	63.9	61.5	67.3	76.1	81.9	77.3	83.1
	20XV	47.7	47.7	47.7	54.6	53.4	60.3	67.7	74.6	70.1	77
SSR	20XW/XTB	66.5	66.5	66.5	73.4	72.2	79.1	86.5	93.4	88.9	95.8
331	25XVY	60	60	60	67.4	65.7	73.1	80	87.4	82.4	89.8
	25XWY/XTBY	83	83	83	90.4	88.7	96.1	103	110.4	105.4	112.8
	30XW	97	97	97	105.1	102.7	110.8	121	129.1	123.4	131.5
	35XW	110.9	110.9	110.9	119.9	117.7	126.7	136.9	145.9	139.3	148.3
	25R/C	82.8	82.8	82.8	90.4	89.2	96.8	100.1	107.7	102.5	110.1
	25LR/LC	102	102	102	109.6	108.4	116	119.3	126.9	121.7	129.3
	30R/C	98	98	98	107.8	104.4	114.2	118.5	128.3	120.9	130.7
	30LR/LC	120.5	120.5	120.5	130.3	126.9	136.7	141	150.8	143.4	153.2
SNR/	35R/C/RH/CH	109.5	109.5	109.5	119.7	117.1	127.3	131.1	141.3	133.5	143.7
SNS	35LR/LC/LRH/LCH	135	135	135	145.2	142.6	152.8	156.6	166.8	159	169.2
5145	45R/C/RH/CH	138.2	138.2	138.2	148.4	146.6	156.8	163.2	173.4	166.4	176.6
	45LR/LC/LRH/LCH	171	171	171	181.2	179.4	189.6	196	206.2	199.2	209.4
	55R/C/RH/CH	163.3	163.3	163.3	172.7	171.1	181.3	187.8	198	191	201.2
	55LR/LC/LRH/LCH	200.5	200.5	200.5	209.9	208.3	218.5	225	235.2	228.2	238.4
	65R/C	186	186	186	196.2	194.2	204.8	214.3	224.9	217.5	228.1

SNR 65LR/LC 246 246 246 256.2 254.2 264.8 274.3 284.9 277.5 288.1												Unit: mn
SNR/ 65LR/LC		Model No						L				
SINZE (65 LRLC)		WOULD INU.	Standard overall length	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
SNS BSLRAC 302.8 302.8 302.8 313.8 312.2 323.2 - - - - - - - - - - - -	SNR/	65LR/LC	Ů	246	246	256.2	254.2	264.8	274.3	284.9	277.5	288.1
Tarker T		85LR/LC	302.8	302.8	302.8	313.8	312.2	323.2	_	_	_	_
SHW		12CAM/CRM	37	37	37	_	_	_	48	_	_	_
SHW		12HRM	50.4	50.4	50.4	_	_	_	61.4	_	_	_
SHW 21CA/CR 59 59 59 64 63.2 68.2 75.6 80.6 77.2 82.2 27CA/CR 72.8 72.8 72.8 73.6 77.8 83.6 89.4 95.2 91.8 97.8 35CA/CR 107 107 107 114.4 112 119.4 129 136.4 131.4 136.8 50CA/CR 141 141 141 149.2 147.4 155.6 166 174.2 168.4 176.6 50CA/CR 141 141 141 141 149.2 147.4 155.6 166 174.2 168.4 176.6 50W 22.1 22.1		14CAM/CRM	45.5	45.5	45.5	_	_	_	60.7	_	_	_
21CACR	01.1147	17CAM/CRM	51	51	51	54	53.4	56.4	66.2	69.2	67.4	70.4
35CA/CR	SHW	21CA/CR	59	59	59	64	63.2	68.2	75.6	80.6	77.2	82.2
SOCA/CR		27CA/CR	72.8	72.8	72.8	78.6	77.8	83.6	89.4	95.2	91.8	97.6
S		35CA/CR	107	107	107	114.4	112	119.4	129	136.4	131.4	138.8
SW		50CA/CR	141	141	141	149.2	147.4	155.6	166	174.2	168.4	176.6
T		5	16.9	16.9	_	_	_	_	_	_	_	_
Name		5W	22.1	22.1	_	_	_	_	_	_	_	_
9 30.8 30.8 30.8 42.4 9N 40.8 40.8 40.8 52.4 9W 39 39 39 50.6 9WN 50.7 50.7 50.7 62.3 122 34.4 34.4 34.4 58.7 12W 44.5 44.5 44.5 58.7 12W 44.5 44.5 44.5 56.1 12WN 59.5 59.5 59.5 59.5 77.1 15N 60.8 60.8 60.8 75.2 15W 55.5 55.5 55.5 55.5		7	23.4	23.4	23.4	_	_	_	_	_	_	_
SRS SRS 12 34.4 34.4 34.4		7W	31	31	31	_	_	_	_	_	_	_
SRS SRS 12		9	30.8	30.8	30.8	_	_	_	42.4	_	_	_
SRS SRS 12		9N	40.8	40.8	40.8	_	_	_	52.4	_	_	_
SRS		9W	39	39	39	_	_	_	50.6	_	_	_
12N		9WN	50.7	50.7	50.7	_	_	_	62.3	_	_	_
12N	CDC	12	34.4	34.4	34.4	_	_	_	46	_	_	_
12WN	SKS	12N	47.1	47.1	47.1	_	_	_	58.7	_	_	_
15		12W	44.5	44.5	44.5	_	_	_	56.1	_	_	_
15N		12WN	59.5	59.5	59.5	_	_	_	71.1	_	_	_
15W 55.5 55.5 55.5 -		15	43	43	43	_	_	_	57.2	_	_	_
15WN		15N	60.8	60.8	60.8	_	_	_	75	_	_	_
SCR		15W	55.5	55.5	55.5	_	_	_	69.7	_	_	_
SCR		15WN	74.5	74.5	74.5	_	_	_	88.7	_	_	_
15S		20	50	50	50	_	_	_	65.2	_	_	_
SCR 20S 79 79 79 85.4 83 89.4 94 100 96 102.5		25	77	77	77	_	_	_	92.6	_	_	_
SCR 20		15S	64.4	64.4	64.4	69.8	66.8	72.2	78.9	84.4	79.9	85.2
SCR 25		20S	79	79	79	85.4	83	89.4	94	100	96	102.5
SCR 30		20	98	98	98	104.4	102	108.4	113	119	115	121.5
131 131 131 141 138.8 147.4 154.4 163 156.8 165.4 35	CCD	25	109	109	109	118.6	117.4	124.6	129	136.2	131.4	138.6
HSR HSR	SCR	30	131	131	131	141	138.8	147.4	154.4	163	156.8	165.4
BRM		35	152	152	152	164.8	162.4	172.2	178	187.8	180.4	190.2
BRM		45	174	174	174	186.8	185.2	195	203	212.8	206.2	216
HSR 10RM 31 31 -		65	272	272	272	289.6	287.2	299.6	309	321.4	312.2	324.6
HSR 12RM		8RM	24	24	_	_	_	_	_	_	_	_
HSR HSR 15A/B/R/YR 56.6 56.6 56.6 61.8 58.2* 63.4* 76 81.2 77.2 82.4		10RM	31	31	_	_	_	_	_	_	_	_
HSR HSR 20A/B/R/CA/CB/YR 74 74 74 74 74 80.6 76.6 83.2 92 98.6 95.2 101.6 20LA/LB/LR/HA/HB 90 90 90 90.6 90.6 92.6 99.2 108 114.6 111.2 117.6 25A/B/R/CA/CB/YR 83.1 83.1 83.1 90.7 86.7 94.3 101 108.6 105.3 112.9 25LA/LB/LR/HA/HB 102.2 102.2 102.2 109.8 105.8 113.4 120.1 127.7 124.4 132. 30A/B/R/CA/CB/YR 98 98 98 105.6 101.6 109.2 119.9 127.5 124.2 131.6 30LA/LB/LR/HA/HB 120.6 120.6 120.6 120.6 128.2 124.2 131.8 35A/B/R/CA/CB/YR 109.4 109.4 109.4 109.4 117 113 120.6 132.4 140 135.6 143.2 35LA/LB/LR/HA/HB 134.8 134.8 134.8 134.8 142.4 138.4 146 157.8 165.4 161 168.6 45A/B/R/CA/CB/YR 139 139 139 139 146.2 144.2 151.4 — — — — — — — 55A/B/R/CA/CB/YR 163 163 170.8 170.8 170.2 168.2 175.4 — — — — — — — — — — — — —		12RM	45	45	_	_	_	_	_	_	_	_
HSR HSR 20LA/LB/LR/HA/HB 90 90 90 90 96.6 92.6 99.2 108 114.6 111.2 117.8 25A/B/R/CA/CB/YR 83.1 83.1 83.1 90.7 86.7 94.3 101 108.6 105.3 112.9 25LA/LB/LR/HA/HB 102.2 102.2 102.2 109.8 105.8 113.4 120.1 127.7 124.4 132 30A/B/R/CA/CB/YR 98 98 98 105.6 101.6 109.2 119.9 127.5 124.2 131.8 30LA/LB/LR/HA/HB 120.6 120.6 120.6 128.2 124.2 131.8 142.5 150.1 146.8 154.4 35A/B/R/CA/CB/YR 109.4 109.4 117 113 120.6 132.4 140 135.6 143.2 35LA/LB/LR/HA/HB 134.8 134.8 134.8 142.4 138.4 146 157.8 165.4 161 168.6 45A/B/R/CA/CB/YR 139 139 139 146.2 144.2 151.4 — — — — — — — — — — — — — — — — — — —		15A/B/R/YR	56.6	56.6	56.6	61.8	58.2*	63.4*	76	81.2	77.2	82.4
HSR 25A/B/R/CA/CB/YR 83.1 83.1 83.1 90.7 86.7 94.3 101 108.6 105.3 112.5 25LA/LB/LR/HA/HB 102.2 102.2 102.2 109.8 105.8 113.4 120.1 127.7 124.4 132 30A/B/R/CA/CB/YR 98 98 98 105.6 101.6 109.2 119.9 127.5 124.2 131.8 30LA/LB/LR/HA/HB 120.6 120.6 120.6 128.2 124.2 131.8 142.5 150.1 146.8 154.4 35A/B/R/CA/CB/YR 109.4 109.4 109.4 117 113 120.6 132.4 140 135.6 143.2 35LA/LB/LR/HA/HB 134.8 134.8 134.8 142.4 138.4 146 157.8 165.4 161 168.6 45A/B/R/CA/CB/YR 139 139 139 146.2 144.2 151.4		20A/B/R/CA/CB/YR	74	74	74	80.6	76.6	83.2	92	98.6	95.2	101.8
HSR 25LA/LB/LR/HA/HB 102.2 102.2 102.2 109.8 105.8 113.4 120.1 127.7 124.4 132 30A/B/R/CA/CB/YR 98 98 98 105.6 101.6 109.2 119.9 127.5 124.2 131.8 30LA/LB/LR/HA/HB 120.6 120.6 120.6 128.2 124.2 131.8 142.5 150.1 146.8 154.4 35A/B/R/CA/CB/YR 109.4 109.4 117 113 120.6 132.4 140 135.6 143.2 35LA/LB/LR/HA/HB 134.8 134.8 134.8 142.4 138.4 146 157.8 165.4 161 168.6 45A/B/R/CA/CB/YR 139 139 139 146.2 144.2 151.4 — — — — — 45LA/LB/LR/HA/HB 170.8 170.8 170.8 178 176 183.2 — — — — 55A/B/R/CA/CB/YR 163 163 163 170.2 168.2 175.4 — — — —		20LA/LB/LR/HA/HB	90	90	90	96.6	92.6	99.2	108	114.6	111.2	117.8
30A/B/R/CA/CB/YR 98 98 98 105.6 101.6 109.2 119.9 127.5 124.2 131.8 30LA/LB/LR/HA/HB 120.6 120.6 120.6 128.2 124.2 131.8 142.5 150.1 146.8 154.4 35A/B/R/CA/CB/YR 109.4 109.4 117 113 120.6 132.4 140 135.6 143.2 35LA/LB/LR/HA/HB 134.8 134.8 134.8 142.4 138.4 146 157.8 165.4 161 168.6 45A/B/R/CA/CB/YR 139 139 139 146.2 144.2 151.4 — — — — — — — — — — — — — — — — — —		25A/B/R/CA/CB/YR	83.1	83.1	83.1	90.7	86.7	94.3	101	108.6	105.3	112.9
30A/B/R/CA/CB/YR 98 98 98 105.6 101.6 109.2 119.9 127.5 124.2 131.8 30LA/LB/LR/HA/HB 120.6 120.6 120.6 128.2 124.2 131.8 142.5 150.1 146.8 154.4 35A/B/R/CA/CB/YR 109.4 109.4 117 113 120.6 132.4 140 135.6 143.2 35LA/LB/LR/HA/HB 134.8 134.8 134.8 142.4 138.4 146 157.8 165.4 161 168.6 45A/B/R/CA/CB/YR 139 139 139 146.2 144.2 151.4 — — — — — — 45LA/LB/LR/HA/HB 170.8 170.8 170.8 178 176 183.2 — — — — — — 55A/B/R/CA/CB/YR 163 163 163 170.2 168.2 175.4 — — — — — — — — — — — — — — — — — —	пср	25LA/LB/LR/HA/HB	102.2	102.2	102.2	109.8	105.8	113.4	120.1	127.7	124.4	132
35A/B/R/CA/CB/YR 109.4 109.4 109.4 117 113 120.6 132.4 140 135.6 143.2 35LA/LB/LR/HA/HB 134.8 134.8 134.8 142.4 138.4 146 157.8 165.4 161 168.6 45A/B/R/CA/CB/YR 139 139 139 146.2 144.2 151.4 — — — — — 45LA/LB/LR/HA/HB 170.8 170.8 170.8 176 183.2 — — — — 55A/B/R/CA/CB/YR 163 163 163 170.2 168.2 175.4 — — — —	1101	30A/B/R/CA/CB/YR	98	98	98	105.6	101.6	109.2	119.9	127.5	124.2	131.8
35LA/LB/LR/HA/HB 134.8 134.8 134.8 142.4 138.4 146 157.8 165.4 161 168.6 45A/B/R/CA/CB/YR 139 139 139 146.2 144.2 151.4 — — — — — 45LA/LB/LR/HA/HB 170.8 170.8 170.8 178 176 183.2 — — — — 55A/B/R/CA/CB/YR 163 163 163 170.2 168.2 175.4 — — — —		30LA/LB/LR/HA/HB	120.6	120.6	120.6	128.2	124.2		142.5	150.1	146.8	154.4
45A/B/R/CA/CB/YR 139 139 139 146.2 144.2 151.4 —			109.4	109.4	109.4	117	113	120.6	132.4	140	135.6	143.2
45LA/LB/LR/HA/HB 170.8 170.8 170.8 178 176 183.2 — — — — — 55A/B/R/CA/CB/YR 163 163 163 170.2 168.2 175.4 — — — —		35LA/LB/LR/HA/HB	134.8	134.8	134.8	142.4	138.4	146	157.8	165.4	161	168.6
55A/B/R/CA/CB/YR 163 163 163 170.2 168.2 175.4 — — — —		45A/B/R/CA/CB/YR	139	139	139	146.2	144.2	151.4		_	_	_
		45LA/LB/LR/HA/HB	170.8	170.8	170.8	178	176	183.2	_	_	_	_
55LA/LB/LR/HA/HB 201.1 201.1 201.1 208.3 206.3 213.5 — — — —		55A/B/R/CA/CB/YR	163	163	163	170.2	168.2	175.4	_	_	_	_
		55LA/LB/LR/HA/HB	201.1	201.1	201.1	208.3	206.3	213.5	_	_	_	_

							L				
	Model No.	Standard overall length	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
	65A/B/R/CA/CB/YR	186	186	186	193.2	191.2	198.4	_	_	_	_
	65LA/LB/LR/HA/HB	245.5	245.5	245.5	252.7	250.7	257.9	_	_	_	_
	85A/B/R/CA/CB/YR	245.6	245.6	245.6	252.8	252.4	259.6	_	_	_	_
HSR	85LA/LB/LR/HA/HB	303	303	303	310.2	309.8	317	_	_	_	_
	100HA/HB/HR	334	334	334	_	_	_	_	_	_	_
	120HA/HB/HR	365	365	365	_	_	_	_	_	_	_
	150HA/HB/HR	396	396	396	_	_	_	_	_	_	_
	15W/TB	57	57	57	62.2	58.4*	63.6*	_	_	_	_
	15V/SB	40.4	40.4	40.4	45.6	41.8*	47*	_	_	_	_
	20W/TB	66.2	66.2	66.2	72.8	70.6*	77.2*	_	_	_	_
	20V/SB	47.3	47.3	47.3	53.9	51.7*	58.3*	_	_	_	_
	25WY/TBY	83	83	83	90.6	87.4	95	_	_	_	_
	25VY/SBY	59.2	59.2	59.2	66.8	63.6	71.2	_	_	_	_
	30W/TB	96.8	96.8	96.8	104.4	99.4	107	_	_	_	_
	30V/SB	67.9	67.9	67.9	75.5	70.5	78.1	_	_	_	_
SR	35W/TB	111	111	111	118.6	113.6	121.2	_	_	-	_
	35V/SB	77.6	77.6	77.6	85.2	80.2	87.8	_	_	_	_
	45W/TB	126	126	126	134.6	129.4	138	_	_	_	_
	55W/TB	156	156	156	164.6	159.4	168	_	_	_	_
	70T	194.6	194.6	194.6	201.8	200.8	208	_	_	_	_
	85T	180	180	180	_	_	_	_	_	_	_
	100T	200	200	200	_	_	_	_	_	_	_
	120T	235	235	235	_	_	_	_	_	_	_
	150T	280	280	280	_	_	_	_	_	_	_
	25XR/XA/XB	82.8	82.8	82.8	90.4	89.2	96.8	100.1	107.7	102.5	110.1
	25XLR/XLA/XLB	102	102	102	109.6	108.4	116	119.3	126.9	121.7	129.3
	30R/A/B	98	98	98	107	104.4	113.4	119.3	128.3	121.7	130.7
	30LR/LA/LB	120.5	120.5	120.5	129.5	126.9	135.9	141.8	150.8	144.2	153.2
	35R/A/B	109.5	109.5	109.5	119.7	117.1	127.3	131.1	141.3	133.5	143.7
	35LR/LA/LB	135	135	135	145.2	142.6	152.8	156.6	166.8	159	169.2
	45R/A/B	139	139	139	149.2	147.4	157.6	164.4	174.6	167.6	177.8
	45LR/LA/LB	171	171	171	181.2	179.4	189.6	196.4	206.6	199.6	209.8
NR/	55R/A/B	162.8	162.8	162.8	173	171.4	181.6	188.1	198.3	191.3	201.5
NRS	55LR/LA/LB	200	200	200	210.2	208.6	218.8	225.3	235.5	228.5	238.7
	65R/A/B	185.6	185.6	185.6	196.2	194.2	204.8	214.9	225.5	218.1	228.7
	65LR/LA/LB	245.6	245.6	245.6	256.2	254.2	264.8	274.9	285.5	278.1	288.7
	75R/A/B	218	218	218	229	226.6	237.6	_	_	_	_
	75LR/LA/LB	274	274	274	285	282.6	293.6	_	_	_	_
	85R/A/B	246.7	246.7	246.7	257.7	256.1	267.1	_	_	_	_
	85LR/LA/LB	302.8	302.8	302.8	313.8	312.2	323.2	_	_	_	_
	100R/A/B	286.2	286.2	286.2	297.8	295.6	307.2	_	_	_	_
	100LR/LA/LB	326.2	326.2	326.2	337.8	335.6	347.2	_	_	_	_
	12LRM	37	37	37	_	_	_	_	_	_	_
	14LRM	45.5	45.5	45.5	_	_	_	_	_	_	_
	17CA/CR	50.8	50.8	_	54	53.6	58.6	_	_	_	_
LIDVA	21CA/CR	58.8	58.8	_	64.2	62.8	69	_	_	_	_
HRW	27CA/CR	72.8	72.8	72.8	79	75.6	81.8	_	_	_	_
	35CA/CR	106.6	106.6	106.6	113.8	112	119.2	_	_	_	_
	50CA/CR	140.5	140.5	140.5	147.7	143.3	150.5	_	_	_	_
	60CA	158.9	158.9	158.9	169.7	165.1	175.9	_	_	_	_
RSR/	3 M	_	_	_	_	_	_	_	_	_	_
RSR-W	3N	_	_	_	_	_	_	_	_	_	_
L											

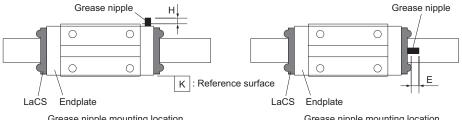
3 5 5 5	Model No. 3WM 3WN	Standard overall length	UU	SS			L				
3 5 5 5	3WM 3WN	overall length	UU	00							
5 5	3WN	440		33	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
5	-	14.9	14.9	_		-	_	_	_	_	_
5	- 14	19.9	19.9	_	_	_	_	_	_	_	_
5	5 M	16.9	16.9	_	_	_	_	_	_	_	_
_	5N/TN	20.1	20.1	_	_	_	_	_	_	_	_
	5WM/WTM	22.1	22.1	_			_	_	_	_	_
5	5WN/WTN	28.1	28.1	_	-	-	_	_	_	_	_
7	7 M	23.4	23.4	_	_	_	_	_	_	_	_
7	7N	33	33	_	_	_	_	_	_	_	_
7	7WM/WTM	31	31	_	_	_	_	_	_	_	_
7	7WN/WTN	40.9	40.9	_			_	_	_	_	_
9	9KM	30.8	30.8	_	_	_	_	_	_	_	_
9	9N	40.8	40.8	_	_	_	_	_	_	_	_
9	9WV	39	39	_	_	_	_	_	_	_	_
RSR/ 9	9WVM	39	39	_	_	_	_	_	_	_	_
RSR-W S		50.7	50.7	_	_	_	_	_	_	_	_
	12VM	35	35	_	_	_	_	_	_	_	_
	12N	47.7	47.7	_	_	_	_	_	_	_	
	12WV	44.5	44.5	_	_	_	_	_	_	_	_
	12WVM	44.5	44.5	_			_	_			
_	12WN	59.5	59.5	_	_	_	_	_	_	_	_
	14WV	50	50	_							
1 -	15VM	42.9	42.9								
_	15N	60.7	60.7	_			_	_			
_	15WV	55.5	55.5	_			_	_	_	_	_
	15WVM	55.5	55.5	_			_	_	_	_	
	15WN	74.5	74.5	_			_		_	_	_
			-				_	_	_	_	
_	20VN	66.5	66.5	_		_	_	_	_	_	
	20N	86.3	86.3	_	_	_	_	_	_	_	_
1 -	7ZM 9ZM	23.4	23.4	_	_		_	_	_	_	
	-	30.8	30.8		_			_		_	
	12ZM	35	35	35	_	_	_	_	_	_	_
RSR-Z/ 1		43	43	43			_	_	_	_	_
	7WZM	31.5	31.5	-			_	_	_	_	_
_	9WZM	39	39	39		_	_	_	_	_	_
	12WZM	44.5	44.5	44.5			_		_	_	
	15WZM	55.5	55.5	55.5	_	_	_	_	_	_	_
1 -	7M	23.4	23.4	_	_	_	_	_	_	_	_
	9KM	30.8	30.8	_	_	_	_	_	_	_	_
	12VM	35	35	_	_	_	_	_	_	_	_
	7ZM	23.4	23.4	_	_	_	_	_	_	_	_
	9ZM	30.8	30.8	_	_	_	_	_	_	_	_
_	12ZM	35	35	35	_	_	_	_	_	_	_
RSH-Z/ 1		43	43	43		_	_	_	_	_	_
	7WZM	31.5	31.5	_	_	_	_	_	_	_	_
-	9WZM	39	39	39	_		_	_	_	_	
1	12WZM	44.5	44.5	44.5	_	_	_	_	_	_	_
1	15WZM	55.5	55.5	55.5	_	-	_	_	_	_	_
Ć	918	45	45	_	_	_	_	_	_	_	_
	1123	52	52	_	_	_	_	_	_	_	_
HR 1	1530	69	69	_	_	_	_	_	_	_	_
	2042	91.6	91.6	_	_	_	_	_	_	_	_
2	2042T	110.7	110.7	_	_	_	_	_	_	_	_

			L								
	Model No.		UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
HR	2555	121	121			_	_	_	_		_
	2555T	146.4	146.4			_	_	_	_		_
	3065	145	145	_	_	_	_	_	_	_	_
	3065T	173.5	173.5	_	_	_	_	_	_	_	_
	3575	154.8	154.8	_	_	_	_	_	_	_	_
	3575T	182.5	182.5			_	_	_	_		_
	4085	177.8	177.8	_	_	_	_	_	_	_	_
	4085T	215.9	215.9			_	_	_	_		_
	50105	227	227	_	_	_	_	_	_	_	_
	50105T	274.5	274.5			_	_	_	_		_
	60125	329	329	_	_	_	_	_	_	_	_
GSR GSR-R	15T	59.8	59.8	59.8	65*	65.8*	71*	_	_		_
	15V	47.1	47.1	47.1	52.3*	53.1*	58.3*	_	_	_	_
	20T	74	74	74	80.6	77.6	84.2	_	_		_
	20V	58.1	58.1	58.1	64.7	61.7	68.3	_	_	_	_
	25T	88	88	88	95	91.6	98.6	_	_	_	_
	25V	69	69	69	76	72.6	79.6	_	_		_
	30T	103	103	103	110.6	107.2	114.8	_	_	_	_
	35T	117	117	117	124.6	121.2	128.8	_	_	_	_
	25T-R	88	88	88	95	91.6	98.6	_	_		_
	25V-R	69	69	69	76	72.6	79.6	_	_	_	_
	30T-R	103	103	103	110.6	107.2	114.8	_	_	_	_
	35T-R	117	117	117	124.6	121.2	128.8	_	_	_	_
CSR	15	56.6	56.6	56.6	61.8	58.2*	63.4*	_	_	_	_
	20S	74	74	74	80.6	76.6	83.2	_	_	_	_
	20	90	90	90	96.6	92.6	99.2	_	_	_	_
	25S	83.1	83.1	83.1	90.7	86.7	94.3	_	_	_	_
	25	102.2	102.2	102.2	109.8	105.8	113.4	_	_	_	_
	30S	98	98	98	105.6	101.6	109.2	_	_	_	_
	30	120.6	120.6	120.6	128.2	124.2	131.8	_	_		_
	35	134.8	134.8	134.8	142.4	138.4	146	_	_	_	_
	45	170.8	170.8	170.8	178	176	183.2	_	_		_
MX	5M	23.3	23.3			_	_	_	_		_
	7WM	40.8	40.8	_	_	_	_	_	_	_	_
JR	25A/B/R	83.1	83.1	83.1	90.7	89.4	97	_	_	_	_
	35A/B/R	113.6	113.6	113.6	125.6	122	134*	_	_		_
	45A/B/R	145	145	145	159	150.8	164.8*	_	_	_	_
	55A/B/R	165	165	165	175.4	170.4	180.8*	_	_	_	_
	12A+60/100R	44.6	44.6	_	_	_	_	_	_	_	_
	15A+60/150R	54.5	54.5	54.5	59.7	_	_	_	_	_	_
	15A+60/300R	55.5	55.5	55.5	60.7	57.1	62.3	_	_	_	_
	15A+60/400R	55.8	55.8	55.8	61	57.3	62.5	_	_	_	_
	25A+60/500R	81.6	81.6	81.6	89.2	85.5	93.1		_	_	_
	25A+60/750R	82.3	82.3	82.3	89.9	86	93.6	_	_	_	_
HCR	25A+60/1000R	82.5	82.5	82.5	90.1	86.2	93.8	_	_	_	_
TION	35A+60/600R	107.2	107.2	107.2	114.8	111.2	118.8	_	_	_	_
	35A+60/800R	107.5	107.5	107.5	115.1	111.5	119.1	_		_	_
	35A+60/1000R	108.2	108.2	108.2	115.8	112	119.6	_	_	_	_
	35A+60/1300R	108.5	108.5	108.5	116.1	112.3	119.8			_	
	45A+60/800R	136.7	136.7	136.7	143.9	142.1	149.2	_	_		_
	45A+60/1000R	137.3	137.3	137.3	144.5	142.7	149.9	_	_	_	_
	45A+60/1200R	137.3	137.3	137.3	144.5	142.7	149.9	_	_	_	_

	Madalah	Standard					L				
	Model No.	overall length	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
	45A+60/1600R	138	138	138	145.2	143.3	150.5	_	_	_	_
	65A+60/1000R	193.8	193.8	193.8	201	199.4	206.6	_	_	_	_
HCR	65A+60/1500R	195.4	195.4	195.4	202.6	200.8	208	_	_	_	_
пск	65A+60/2000R	195.9	195.9	195.9	203.1	201.3	208.5	_	_	_	_
	65A+60/2500R	196.5	196.5	196.5	203.7	201.8	209	_	_	_	_
	65A+60/3000R	196.5	196.5	196.5	203.7	201.8	209	_	_	_	_
	15A	48	48	_	_	_	_	_	_	_	_
	25A	62.2	62.2	_	_	_	_	_	_	_	_
HMG	35A	80.6	80.6	_	_	_	_	_	_	_	_
	45A	107.6	107.6	_	_	_	_	_	_	_	_
	65A	144.4	144.4	_	_	_	_	_	_	_	_
	20TBC	67	67	_	_	_	_	_	_	_	_
	25TBC	78	78	_	_	_	_	_	_	_	_
NSR-	30TBC	90	90	_		_	_		_	_	_
TBC	40TBC	110	110	110			_				_
	50TBC	123	123	123	_	_	_	_	_		
	70TBC	150	150	150	_	_	_	_	_	_	_
	15M1A/M1B/M1R/M1YR	59.6	59.6	59.6	_	_		_	_	_	_
	20M1A/M1B/M1R/M1YR	76	76	76		_	_	_	_	_	_
	20M1LA/M1LB/M1LR	92	92	92	_	_	_	_	_	_	_
					_	_	_	_	_	_	_
HSR-	25M1A/M1B/M1R/M1YR	83.9	83.9	83.9		_	_		_	_	_
M1	25M1LA/M1LB/M1LR	103	103	103	_	_	_	_	_	_	_
	30M1A/M1B/M1R/M1YR	98.8	98.8	98.8	_	_	_	_	_	_	_
	30M1LA/M1LB/M1LR	121.4	121.4	121.4	_	_	_	_	_	_	_
	35M1A/M1B/M1R/M1YR	112	112	112	_	_	_	_	_	_	_
	35M1LA/M1LB/M1LR	137.4	137.4	137.4	_	_	_	_	_	_	_
	15M1W/M1TB	57	57	57	_	_	_	_	_	_	_
	15M1V/M1SB	40.4	40.4	40.4	_	_	_	_	_	_	_
	20M1W/M1TB	66.2	66.2	66.2	_	_	_	_	_	_	_
	20M1V/M1SB	47.3	47.3	47.3	_	_	_	_	_	_	_
SR-	25M1W/M1TB	83	83	83	_	_	_	_	_	_	_
M1	25M1V/M1SB	59.2	59.2	59.2	_	_	-	_	_	_	_
	30M1W/M1TB	96.8	96.8	96.8	_	_	_	_	_	_	_
	30M1V/M1SB	67.9	67.9	67.9	_	_	_	_	_	_	_
	35M1W/M1TB	111	111	111	_	_	_	_	_	_	_
	35M1V/M1SB	77.6	77.6	77.6	_	_	_	_	_	_	_
	9M1K	30.8	30.8	_	_	_	_	_	_	_	_
	9M1N	41	41	_	_	_	_	_	_	_	_
	9M1WV	39	39	_	_	_	_	_	_	_	_
	9M1WN	50.7	50.7	_	_	_	_	_	_	_	_
	12M1V	35	35	_	_	_	_	_	_	_	_
	12M1N	47.7	47.7	_	_	_	_	_	_	_	_
RSR-	12M1WV	44.5	44.5	_		_	_	_		_	_
M1	12M1WN	59.5	59.5	_	_	_	_	_	_	_	_
	15M1V	43	43	_	_	_	_	_	_	_	_
	15M1V	61	61	_							
	15M1WV	55.5	55.5				_				
	15M1WN	74.5	74.5								
	20M1V	66.5	66.5	_		_			_	_	
	20M1V 20M1N	86.3	86.3			_	_		_		_
	ZUIVITIN	00.3	00.3			_		_		_	

							L				
	Model No.	Standard overall length	UU	SS	DD	ZZ	KK	SSHH	DDHH	ZZHH	KKHH
HSR-	15M2A	56.6	56.6	56.6	ı	ı	-	ı	_	_	_
M2	20M2A	74	74	74	_	_	_	_	_	_	_
	25M2A	83.1	83.1	83.1	_	_	_	_	_	_	_
	15A/V	69.2	69.2	69.2	71.2	ı	1	1	_	_	_
	20A/V	86.2	86.2	86.2	88.2	89.6	91.6	105.2	107.2	107.6	109.6
	20LA/LV	106.2	106.2	106.2	108.2	109.6	111.6	125.2	127.2	127.6	129.6
	25C/R	95.5	95.5	95.5	100.5	100.5	105.5	115.3	120.3	117.7	122.7
	25LC/LR	115.1	115.1	115.1	120.1	120.1	125.1	134.9	139.9	137.3	142.3
	30C/R	111	111	111	118	116	123	130.8	137.8	133.2	140.2
	30LC/LR	135	135	135	142	140	147	154.8	161.8	157.2	164.2
SRG	35C/R	125	125	125	132.8	131.4	139.2	148.6	156.4	151	158.8
Sixo	35LC/LR	155	155	155	162.8	161.4	169.2	178.6	186.4	181	188.8
	45C/R	155	155	155	164.2	162.2	171.4	182	191.2	185.2	194.4
	45LC/LR	190	190	190	199.2	197.2	206.4	217	226.2	220.2	229.4
	55C/R	185	185	185	194.2	192.2	201.4	212	221.2	215.2	224.4
	55LC/LR	235	235	235	244.2	242.2	251.4	262	271.2	265.2	274.4
	65LC/LV	303	303	303	314.2	311.4	322.6	335.4	346.6	338.6	349.8
	85LC	350	350	350	361.2	365.2	376.4	_	_	_	_
	100LC	395	395	395	406.2	411	422.2	_	_	_	_
	35C/R	125	125	125	132.8	131.4	139.2	148.6	156.4	151	158.8
	35LC/LR	155	155	155	162.8	161.4	169.2	178.6	186.4	181	188.8
	45C/R	155	155	155	164.2	162.2	171.4	182	191.2	185.2	194.4
SRN	45LC/LR	190	190	190	199.2	197.2	206.4	217	226.2	220.2	229.4
	55C/R	185	185	185	194.2	192.2	201.4	212	221.2	215.2	224.4
	55LC/LR	235	235	235	244.2	242.2	251.4	262	271.2	265.2	274.4
	65LC/LR	303	303	303	314.2	311.4	322.6	335.4	346.6	338.6	349.8
	70LR	190	190	190	199.2	197.2	206.4	217	226.2	220.2	229.4
	85LR	235	235	235	244.2	242.2	251.4	262	271.2	265.2	274.4
SRW	100LR	303	303	303	314.2	311.4	322.6	335.4	346.6	338.6	349.8
	130LR	350	350	350	361.2	365.2	376.4	_	_	_	_
	150LR	395	395	395	406.2	411	422.2	_		_	_

^{*} A grease nipple cannot be attached. Contact THK for details.


Model number coding SHS25 **KKHH** C0 +1200L QΖ Symbol for No. Symbol With for LM rail jointed use tape Model Type of With QZ LM rail length of rails used on number LM block Lubricator (*1) (in mm) the same plane (*5) Radial clearance Accuracy symbol (*4) No. of LM blocks Contamination symbol (*3) Normal grade (No Symbol) Normal (No symbol) High accuracy grade (H) Precision grade (P)/Super precision grade (SP) Ultra precision grade (UP) used on the same protection Light preload (C1) accessory symbol (*2) rail Medium preload (C0)

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

(*1) See 🖪 1-345. (*2) See 🖪 1-352. (*3) See 🖪 1-89. (*4) See 🖪 1-94. (*5) See 🖪 1-35.

Those models equipped with QZ Lubricator cannot have a grease nipple.

Incremental Dimension with Grease Nipple (When LaCS is Attached)

Grease nipple mounting location for models SHS, SSR, SNR/SNS, SRG and NR/NRS

Grease nipple mounting location for models SHW, SRS and HSR

Unit: mm

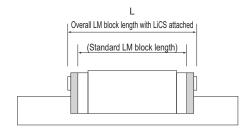
	Model No.	Incremental dimension with grease nipple H	Nipple type
	15C/LC	_	PB107
	15R/V/LV	4.7	PB107
	20C/LC	_	PB107
	20V/LV	4.5	PB107
	25C/LC	=	PB107
	25R/LR/V/LV	4.7	PB107
	30C/LC		A-M6F
	30R/LR/V/LV	7.4	A-M6F
SHS	35C/LC	=	A-M6F
	35R/LR/V/LV	7.4	A-M6F
	45C/LC	_	A-M6F
	45R/LR/V/LV	7.7	A-M6F
	55C/LC	_	A-M6F
	55R/LR/V/LV	7.4	A-M6F
	65C/LC		A-M6F
	65V/LV	6.9	A-M6F
	15XVY/XWY	4.4	PB107
	15XTBY	_	PB107
	20XV/XW	4.6	PB107
	20XTB	_	PB107
SSR	25XVY/XWY	4.5	PB107
	25XTBY	_	PB107
	30XW	5	PB1021B
	35XW	5	PB1021B
	25C/LC	_	PB1021B
	25R/LR	4.9	PB1021B
	30C/LC	_	PB1021B
	30R/LR	4.5	PB1021B
	35C/LC,CH/LCH	_	A-M6F
	35R/LR,RH/LRH	7.8	A-M6F
SNR/SNS	45C/LC,CH/LCH	_	A-M6F
	45R/LR,RH/LRH	7.9	A-M6F
	55C/LC,CH/LCH	_	A-M6F
	55R/LR,RH/LRH	7.7	A-M6F
	65C/LC		A-PT1/8
	65R/LR	15.8	A-PT1/8
	00.0210	10.0	711170

Unit: mm

	Model No.	Incremental dimension with grease nipple H	Nipple type
	25A/B/LA/LB	_	PB1021B
	25R/LR	4.8	PB1021B
	30A/B/LA/LB	_	PB1021B
	30R/LR	4.5	PB1021B
	35A/B/LA/LB	_	A-M6F
NR/NRS	35R/LR	7.4	A-M6F
INK/INKS	45A/B/LA/LB	_	A-M6F
	45R/LR	7.4	A-M6F
	55A/B/LA/LB	_	A-M6F
	55R/LR	6.9	A-M6F
	65A/B/LA/LB	_	A-PT1/8
	65R/LR	15.3	A-PT1/8
	35LC	_	A-M6F
	35LR	7.2	A-M6F
	45LC	_	A-M6F
SRG	45LR	7.2	A-M6F
SKG	55LC	_	A-M6F
	55LR	7.2	A-M6F
	65LC	_	A-M6F
	65LR	6.2	A-M6F

Unit: mm

	Model No.	Incremental dimension with grease nipple E	Nipple type
	21CA/CR	4.2	PB1021B
SHW	27CA/CR	10.7	B-M6F
Silv	35CA/CR	10	B-M6F
	50CA/CR	21	B-PT1/8
SRS	25	4	PB1021B
	15A/B/R/YR	2.9	PB1021B
	20A/B/R/CA/CB/YR	9.4	B-M6F
	20LA/LB/LR/HA/HB	9.4	B-M6F
	25A/B/R/CA/CB/YR	9	B-M6F
HSR	25LA/LB/LR/HA/HB	9	B-M6F
	30A/B/R/CA/CB/YR	9	B-M6F
	30LA/LB/LR/HA/HB	9	B-M6F
	35A/B/R/CA/CB/YR	8	B-M6F
	35LA/LB/LR/HA/HB	8	B-M6F


Note1) When desiring the mounting location for the grease nipple other than the above, contact THK.

Note2) Those models equipped with QZ Lubricator cannot have a grease nipple. When desiring both QZ Lubricator and a grease nipple, contact THK.

Note3) When desiring a grease nipple for model SHW or SRS without QZ Lubricator, indicate "with grease nipple" when placing an order. (If not, a grease nipple will not be attached.)

Note4) Model HSR15 attached with ZZ or KK cannot have a grease nipple. Contact THK for details.

LM Block Dimension (Dimension L) with LiCS Attached

Unit: mm

N	/lodel No.		L	-
10		Standard overall length	GG	PP
	15XVY	40.3	48.7	48.7
	15XWY/XTBY	56.9	65.3	65.3
	20XV	47.7	55.8	55.8
SSR	20XW/XTB	66.5	74.6	74.6
JOIN	25XVY	60	67.6	67.6
	25XWY/XTBY	83	90.6	90.6
	30XW	97	106.7	106.7
	35XW	110.9	121.7	121.7
SRG	15A	67	77	77
3110	15V	67	77	77

Model number coding

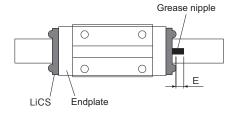
2 GG C1 +600L P T -Ⅱ SSR20 XW

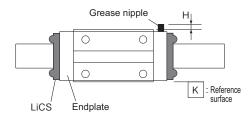
Model Type of number LM block With LiCS (*1)

LM rail length (in mm)

Symbol for LM rail jointed use Symbol for No. of rails used on the same plane (*4)

No. of LM blocks used on the same rail Radial clearance symbol (*2) Normal (No symbol) Light preload (C1) Medium preload (C0)

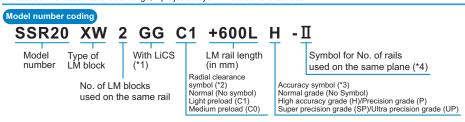

Accuracy symbol (*3)


Normal grade (No Symbol)/High accuracy grade (H) Precision grade (P) /Super precision grade (SP) Ultra precision grade (UP)

(*1) See A1-337 (*2) See A1-89 (*3) See A1-94 (*4) See A1-35

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)
Those models equipped with QZ Lubricator cannot have a grease nipple.

Incremental Dimension with Grease Nipple (When LiCS is Attached)


Model SSR Location for mounting the grease nipple

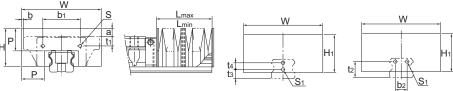
Model SRG Location for mounting the grease nipple

Unit: mm

	Model No.	Incremental dimension	on with grease nipple	Nipple type
	Model No.	E	Н	Nippie type
	15XVY	2.9	_	PB1021B
	15XWY/XTBY	2.9	_	PB1021B
	20XV	9	_	B-M6F
SSR	20XW/XTB	9	_	B-M6F
331	25XVY	9	_	B-M6F
	25XWY/XTBY	9	_	B-M6F
	30XW	9	_	B-M6F
	35XW	8	_	B-M6F
SRG	15A	_	_*	PB107
SixG	15V	_	4.5	PB107

Because this model features a flange, it projects beyond the block end surface.

(*1) See A1-337 (*2) See A1-89 (*3) See A1-94 (*4) See A1-35


Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.)

Those models equipped with QZ Lubricator cannot have a grease nipple.

Bellows

[Dedicated Bellows JSH for Model SHS]

The table below shows the dimensions of dedicated bellows JSH for model SHS. Specify the corresponding model number of the desired bellows from the table.

Models SHS15 to 30

Models SHS35 to 65

Unit: mm

						N	/lain din	nension	S					Suppo			
Mode	l No.	W	Н	H₁	Р	b₁	С	V	R	b ₂	t 2	tз	t ₄	model numbers			
	15	53	26	26	15	22.4	4	4	8	_	_	8	_		15		
	20	60	30	30	17	27.6	7.5	7.5	_	_	_	8	6		20		
	25	75	36	36	20	38	9.1	9.1	13.1	_	-	9	7		25		
JSH	30	80	38	38	20	44	11	11	14	_	_	11	8	SHS	30		
3311	35	86	40.5	40.5	20	50	11	11	18	20	21.5	_	_	3113	35		
	45	97	46	46	20	64.6	13.5	13.5	23.5	26	26.5	_	_		45		
	55	105	48	48	20	68	13	13	23	30	31.5	_	_		55		
	65	126	63	63	25	80	18	18	_	34	45	_	_		65		

Unit: mm

Suppo	orted			C	Other dimensions							
mod	del	Mounti	ng bolt		а			b		A Lmax		
numl	bers	S	S ₁	С	V	R	С	V	R	\ Lmin /		
	15	*M2×8ℓ	M4×8ℓ	5	5	1	3	9.5	9.5	5		
	20	M2.6×8ℓ	M3×6ℓ	5	5	_	-1.5	8	_	6		
	25	M3×8ℓ	M3×6ℓ	6	6	2	2.5	13.5	13.5	7		
SHS	30	M3×10ℓ	M3×6ℓ	3	3	0	-5	10	10	7		
0110	35	M4×10ℓ	M4×8ℓ	0	0	-7	-7	8	8	7		
	45	M4×12ℓ	M4×8ℓ	-5	-5	- 15	-11.7	5.5	5.5	7		
	55	M5×12ℓ	M5×10ℓ	-9	-9	-19	-17.5	2.5	2.5	7		
	65	M6×14ℓ	M6×12ℓ	-8	-8	_	-22	0	_	9		

Use self-tapping screws as the mounting screws on the LM block side of the JSH15.

Note2) For lubrication when using the dedicated bellows, contact THK.

Note3) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted.

Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

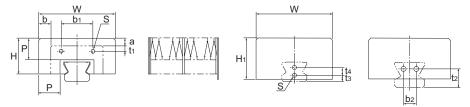
Model number coding

60/420

Model number of bellows for SHS35

Dimensions of the bellows (length when compressed / length when extended)

Note) The length of the bellows is calculated as follow.


Lmin = $\frac{S}{(A-1)}$ S: Stroke length (mm)

Lmax = Lmin · A A: Extension rate

Note1) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

[Dedicated Bellows JSSR-X for Model SSR]

The table below shows the dimensions of dedicated bellows JSSR-X for model SSR. Specify the corresponding model number of the desired bellows from the table.

Models SSR15X to 25X Models SSR30X and 35X

Unit: mm

								Mai	n dim	nensi	ons						Sup-	
Model	No.	W	Н	Ť	Р	b₁	t ₁	b ₂	t ₂	t ₃	t ₄	Mount- ing bolt S	а	XW/ XV	XTB	$\begin{pmatrix} A \\ \underline{Lmax} \\ Lmin \end{pmatrix}$	por mo num	del
	15X	51	24	26	15	20.5	4.7	_	_	8	_	M3×5ℓ	5	8.5	-0.5	5		15X
	20X	58	26	30	15	25	4.2	_	_	6	6	M3×5ℓ	4	8	-0.5	5		20X
JSSR	25X	71	33	38	20	29	5	_	_	6	7	M3×5ℓ	7	11.5	-1	7	SSR	25X
	30X	76	37.5	37.5	20	35	9	12	17	_	_	M4×6ℓ	3	8	_	7		30X
	35X	84	39	39	20	44	7	14	20	_	_	M5×10ℓ	2	7	_	7		35X

Note1) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

when desiring a near-resistant type of bellows, contact THK.

Note2) For lubrication when using the dedicated bellows, contact THK.

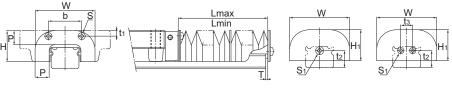
Note3) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted.

Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

Model number coding

JSSR35X 60/420

Model number of bellows for SSR35X


Dimensions of the bellows (length when compressed / length when extended)

Note) The length of the bellows is calculated as follow.

Lmin =
$$\frac{S}{(A-1)}$$
 S: Stroke length (mm)

[Dedicated Bellows JSN for Models SNR and SNS]

For models SNR/SNS-C, SNR/SNS-LC, SNR/SNS-R and SNR/SNS-LR, bellows are available. Attach the simplified bellows when the LM Guide is used in locations subject to a coolant or the like.Fig.1 To gain a higher contamination protection effect, attach a telescopic cover outside the simplified bellows after the bellows is mounted.

Models SNR25 to 45

Models SNR55 to 85 Unit: mm

							Ма	in dim	ensio	ns			, A ,	Suppo	rted
Mode	el No.									Mounti	ng bolt		Lmax	mod	el
		W	Н	H₁	Р	b	t ₁	t 2	tз	S	S ₁	Т	\ Lmin /	numb	ers
	25	50	25.5	24.5	10	26.6	4.6	13	_	M3×5ℓ	M4×4ℓ	1.5	7		25
	30	60	31	30	14	34	5.5	17	_	M4×8ℓ	M4×4ℓ	1.5	9		30
	35	70	35	34	15	36	6	20.5	_	M4×8ℓ	M5×4ℓ	2	10	OND/	35
JSN	45	86	40.5	39.5	17	47	6.5	24	_	M5×10ℓ	M5×4ℓ	2	10	SNR/ SNS	45
	55	100	49	48	19.5	54	10	29.5	18	M5×10ℓ	M5×4ℓ	2	13	0.10	55
	65	126	60	59	22	64	13.5	36.2	20	M6×12ℓ	M6×5ℓ	3.2	13		65
	85	156	70.5	70.5	30	110	15.5	39.5	28	M6×12ℓ	M6×5ℓ	3.2	20		85

Note1) When desiring to use the bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

Note2) For Jubrication when using the bellows, contact THK.

Note3) For the bellows for models SNR/SNS-CH, SNR/SNS-LCH, SNR/SNS-RH and SNR/SNS-LRH, contact THK.

Note4) When using the bellows, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the bellows is required when ordering the LM Guide.

Model number coding

60/420

Model number of bellows for SNR/SNS25

Dimensions of the bellows (length when compressed / length when extended)

Note) The length of the bellows is calculated as follow.

S: Stroke length (mm)

A: Extension rate Lmax = Lmin · A

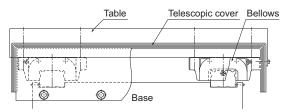
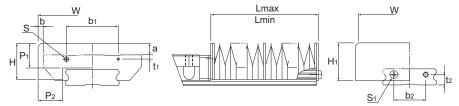



Fig.1 Example of Mounting the Bellows

[Dedicated Bellows JSHW for Model SHW]

The table below shows the dimensions of dedicated bellows JSHW for model SHW. Specify the corresponding model number of the desired bellows from the table.

Unit: mm

Madal	Model No.				Mai	n dimensi	ions				Supported model	
iviodei	NO.	W	Н	H₁	P ₁	P ₂	b ₁	t ₁	b ₂	t ₂	numb	
	17	68	22	23	15	15.4	39	2.6	18	6		17
	21	75	25	26	17	17	35.8	2.9	22	7		21
JSHW	27	85	33.5	33.5	20	20	25	3.5	20	10	SHW	27
	35	120	35	35	20	20	75	7.5	40	13		35
	50	164	42	42	20	20	89.4	14	50	16		50

Unit: mm

			Other dimensions				
Model	No.	Mounti	ng bolt	а	ŀ)	/ A
		*S	S ₁		Model CA	Model CR	(<u>Lmax</u>) Lmin
	17	M2×4ℓ	M3×6ℓ	8	4	9	5
	21	M2×5ℓ	M3×6ℓ	8	3.5	10.5	6
JSHW	27	M2.6×6ℓ	M3×6ℓ	10	2.5	11.5	7
	35	M3×8ℓ	M3×6ℓ	6	0	10	7
	50	M4×12ℓ	M4×8ℓ	_	1	17	7

Note1) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or

when desiring a heat-resistant type of bellows, contact THK.

Note2) For lubrication when using the dedicated bellows, contact THK.

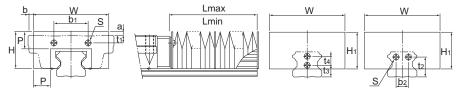
Note3) For the mounting bolts marked with "*", use tapping screws.

Note4) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

60/360

Model number of bellows for SHW21

Dimensions of the bellows (length when compressed / length when extended)


Note) The length of the bellows is calculated as follow.

S: Stroke length (mm)

Lmax = Lmin · A A: Extension rate

[Dedicated Bellows JH for Model HSR]

The table below shows the dimensions of dedicated bellows JH for model HSR. Specify the corresponding model number of the desired bellows from the table.

Models HSR15 to 30 Models HSR35 to 85

Unit: mm

									Mai	n dir	nens	ions							Cuppe	ortod
Mo N	del o.						t	1					Mounting bolt	á	a	k)	(Lmax	Suppo	del
		W	Н	H₁	Р	b ₁	A/B	R	b_2	t 2	tз	t ₄	S	A/B	R	A/B	R	\ Lmin /	Harris	5013
	15	55	27	30	15	25	2.5	6.5	ı	ı	10	ı	*M4×8ℓ	7.5	3.5	-4	- 10.5	5		15
	20	66	32	35	17	34	5	5	I	ı	6	8	M3×6ℓ	7	7	-1.5	-11	6		20
	25	78	38	38	20	30	7	11	ı	ı	10	8	M3×6ℓ	8.5	4.5	-4	-15	7		25
	30	84	42	42	20	40	8	11	-	-	11	10	M4×8ℓ	7	4	3	-12	7		30
JH	35	88	43	43	20	40	9	16	14	23	-	-	M4×8ℓ	4	-	6	-9	7	HSR	35
	45	100	51	51	20	58	10	20	20	29	_	_	M5×10ℓ	_	_	10	-7	7		45
	55	108	54	54	20	66	11	21	26	35	_	_	M5×10ℓ	_	_	16	-4	7		55
	65	132	68	68	20	80	19	19	32	42	_	_	M6×12ℓ	_	_	19	-3	7		65
	85	170	88	88	30	105	23	23	44	50	_	_	M6×12ℓ	_	_	22.5	-7	10		85

Note1) For model JH15's location marked with " * ", mounting bolts are used only on the LM rail side while the LM block side uses M2 x 5 (nominal) tapping screws.

Note2) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

Note3) For lubrication when using the dedicated bellows, contact THK.

Note4) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted.

Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

Model number coding

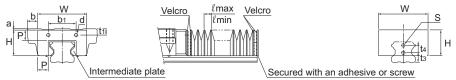
- 60/420

Model number of bellows for HSR25

Dimensions of the bellows (length when compressed / length when extended)

Note) The length of the bellows is calculated as follow.

Lmin =
$$\frac{S}{(A-1)}$$
 S: Stroke length (mm)


 $Lmax = Lmin \cdot A$ A: Extension rate

[Dedicated Bellows DH for Model HSR]

For models HSR15, 20 and 25, bellows DH, which has the following features, is also available other than the dedicated bellows JH. Specify the corresponding model number of the desired bellows from the table.

Features

- (1) Has a width and height smaller than the conventional product so that any part of the bellows does not stick out of the top face of the LM block. The extension rate is equal to or greater than that of the conventional type.
- (2) Has an intermediate plate for each crest so that it will not easily lift and the bellows can be used with vertical mount, wall mount and slant mount.
- (3) Operable at high speed, at up to 120 m/min.
- (4) Since a Velcro tape can be used to install the bellows, a regular-size model can be cut to the desired length, or two or more regular-size bellows can be taped together.
- (5) Can be installed using screws just as bellows JH. In this case, a plate (thickness: 1.6 mm) must be placed between the bellows and the LM bock. Contact THK for details.

Unit: mm

									N	∕lain (dime	nsion	S									
Mo N						t	1					a	ì	k	0			Exten sion rate		Factor	Suppo mod numb	del
		W	Н	Р	b ₁	A/B	R	t₃	t ₄	d	S	A/B	R	A/B	R	ℓmax	ℓmin	Α	Е	k		
	15	35	19.5	8.5	25	2.5	6.5	10	_	ϕ 2.5	<i>φ</i> 5	0	4	6	-0.5	10	2.5	4	2	1.2		15
DH	20	45	25	10	34	5	5	6	8	φ4	φ4	0	0	9	-0.5	13	2.5	5	2	1.3	HSR	20
	25	52	29.5	12	30	7	11	10	8	φ3.5	<i>φ</i> 3.5	0	4	9	-2	15	3	5	2	1.3		25

Note1) For lubrication when using the dedicated bellows, contact THK.

Note2) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

Model number coding

50/250

Model number of bellows for HSR20

Dimensions of the bellows (length when compressed / length when extended)

Note) The maximum length of the bellows itself is calculated as follows.

Lmax (Lmin) = ℓ max (ℓ mim) ×200

Example of calculating bellows dimensions:

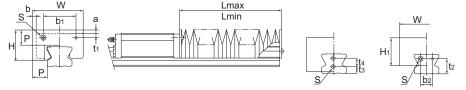
When the stroke of model HSR20 is: ℓs=530mm

Lmin =
$$\frac{\ell s}{(A-1)}$$
 = $\frac{530}{4}$ = 132.5 $\stackrel{.}{=}$ 135

 $Lmax = A \cdot Lmin = 5 \times 135 = 675$

Number of required crests n

$$n = \frac{Lmax}{P \cdot k} = \frac{675}{10 \times 1.3} = 51.9 = 52 \text{ crests}$$


$$Lmin = n \cdot \ell min + E = 52 \times 2.5 + 2 = 132$$

(E indicates the plate thickness of 2)

Therefore, the model number of the required bellows is DH20-132/675.

[Dedicated Bellows JS for Model SR]

The table below shows the dimensions of dedicated bellows JS for model SR. Specify the corresponding model number of the desired bellows from the table.

Models SR15 to 25 Models SR30 to 70

Unit: mm

								Mai	n dim	ensi	ons					, A ,	Suppo	orted
Mode	l No.											Mount- ing bolt		I)	<u>Lmax</u>	mod	del
		W	Н	H₁	Ρ	b₁	t ₁	b ₂	t ₂	t₃	t ₄	S	а	W/V	TB/SB	\ Lmin /	numl	bers
	15	51	24	26	15	22	3.4	-	_	8	_	M3×6ℓ	5	8.5	-0.5	5		15
	20	58	26	30	15	25	4.2	_	_	6	6	M3×6ℓ	4	8	-0.5	5		20
	25	71	33	38	20	29	5	-	_	6	7	M3×6ℓ	7	11.5	-1	7		25
JS	30	76	37.5	37.5	20	42	5	12	17	_	_	M4×8ℓ	3	8	-7	7	SR	30
33	35	84	39	39	20	44	6.5	14	20	_	_	M5×10ℓ	1.5	7	-8	7	SIX	35
	45	95	47.5	47.5	20	60	8	22	27	_	-	M5×10ℓ	-1.5	5	-12.5	7		45
	55	108	55.5	55.5	25	70	10	24	28	ı	ı	M6×12ℓ	-0.5	4	-16	9		55
	70	144	67	67	30	90	13	34	35	_	_	M6×12ℓ	-3	9	_	10		70

Note1) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

Note2) For lubrication when using the dedicated bellows, contact THK.

Note3) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted.

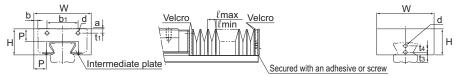
Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

Model number coding

JS55 - 60/540

Model number of bellows for SR55 Dimensions of the bellows (length when compressed / length when extended)

Note) The length of the bellows is calculated as follow.


Lmin =
$$\frac{S}{(A-1)}$$
 S: Stroke length (mm)

[Dedicated Bellows DS for Model SR]

For models SR15, 20 and 25, bellows DS, which has the following features, is also available other than the dedicated bellows JS. Specify the corresponding model number of the desired bellows from the table.

Features

- (1) Has a width and height smaller than the conventional product so that any part of the bellows does not stick out of the top face of the LM block. The extension rate is equal to or greater than that of the conventional type.
- (2) Has an intermediate plate for each crest so that it will not easily lift and the bellows can be used with vertical mount, wall mount and slant mount.
- (3) Operable at high speed, at up to 120 m/min.
- (4) Since a Velcro tape can be used to install the bellows, a regular-size model can be cut to the desired length, or two or more regular-size bellows can be taped together.
- (5) Can be installed using screws just as the conventional type. In this case, a plate (thickness: 1.6 mm) must be placed between the bellows and the LM bock. Contact THK for details.

Unit: mm

										Mai	n dime	nsions						Supp	orted
Mo N											-	C			Extension rate		Factor	mo	del
		W	Н	Р	b₁	t ₁	t ₃	t ₄	d	а	W/V	TB/SB	ℓmax	ℓ min	Α	Е	k	num	bers
	15	38	19	10	22	3.4	8	_	3.5	0	7	2	13	2.5	5	2	1.3		15
DS	20	49	22	10	25	4.2	6	6	4	0	5	3.5	13	2.5	5	2	1.3	SR	20
	25	56	26	12	29	5	6	7	4	0	8.5	4	15	3	5	2	1.3		25

Note1) For lubrication when using the dedicated bellows, contact THK.

Note2) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

Model number coding

DS20 - 50/250

Model number of bellows for SR20

Dimensions of the bellows (length when compressed / length when extended)

Note) The maximum length of the bellows itself is calculated as follows

Lmax (Lmin) = ℓ max (ℓ min) ×200

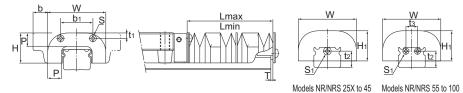
Example of calculating bellows dimensions: When the stroke of model SR20 is: ℓs=530mm

 $\frac{ls}{(A-1)} = \frac{530}{4} = 132.5 = 135$

 $Lmax = A \cdot Lmin = 5 \times 135 = 675$

Number of required crests n

 $\frac{\text{Lmax}}{\text{P} \cdot \text{k}} = \frac{675}{10 \times 1.3} = 51.9 = 52 \text{ crests}$

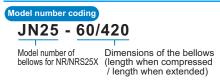

 $Lmin = n \cdot \ell min + E = 52 \times 2.5 + 2 = 132$

(E indicates the plate thickness of 2)

Therefore, the model number of the required bellows is DS20-132/675.

[Simplified Bellows JN Dedicated for Models NR/NRS]

For models NR/NRS, bellows are available. Fig. 2 To gain a higher contamination protection effect, attach a telescopic cover outside the bellows after the bellows are mounted.


Unit: mm

						Ma	ain dim	ension	ıs					, A ,	Supp	ortod
	del o.									Mounti	ing bolt	b A,LA		<u>Lmax</u>	mo num	del
		W	Н	H₁	Р	b₁	t ₁	t 2	tз	S	S ₁	B,LB	Т	\ Lmin /	Hum	5010
	25	48	25.5	25.5	10	26.6	4.6	13	-	M3×5ℓ	M4×4ℓ	11	1.5	7		25X
	30	60	31	31	14	34	5.5	17	_	M4×8ℓ	M4×4ℓ	15	1.5	9		30
	35	70	35	35	15	36	6	20.5	_	M4×8ℓ	M5×4ℓ	15	2	10		35
	45	86	40.5	40.5	17	47	6.5	24	_	M5×10ℓ	M5×4ℓ	17	2	10	ND/	45
JN	55	100	49	49	20	54	10	29.5	18	M5×10ℓ	M5×4ℓ	20	2	13	NR/ NRS	55
	65	126	57.5	57.5	20	64	13.5	36.2	20	M6×12ℓ	M6×5ℓ	22	3.2	13		65
	75	145	64	64	30	80	10.5	34.2	26	M6×12ℓ	M6×5ℓ	25	3.2	20		75
	85	156	70.5	70.5	30	110	15.5	39.5	28	M6×12ℓ	M6×5ℓ	39.5	3.2	20		85
	100	200	82	82	30	140	15	40	34	M8×16ℓ	M6×5ℓ	30	3.2	20		100

Note1) When desiring to use the bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

Note2) For lubrication when using the bellows, contact THK.

Note3) When using the bellows, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the bellows is required when ordering the LM Guide.

Note) The length of the bellows is calculated as follow.

Lmin = $\frac{S}{(A-1)}$ S: Stroke length (mm)

Lmax = Lmin · A A: Extension rate

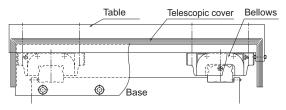
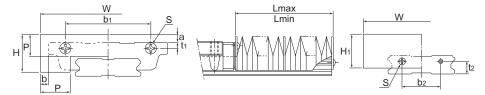



Fig.2 Example of Mounting the Bellows

[Dedicated Bellows JHRW for Model HRW]

The table below shows the dimensions of dedicated bellows JHRW for model HRW. Specify the corresponding model number of the desired bellows from the table.

Unit: mm

							Ма	in dim	ensio	ns					Cunn	o mt o ol
Model	No.	W	Н	H₁	Р	b ₁	t ₁	b ₂	t 2	Mounting bolt S	а	Model CA		(Lmax Lmin	Suppo mod numb	del
	17	68	22	23	15	43	3	18	6	*M3×6ℓ	8	4	9	5		17
	21	75	25	26	17	48	3	22	7	M3×6ℓ	8	3.5	10.5	6		21
JHRW	27	85	33.5	33.5	20	48	3	20	10	M3×6ℓ	10	2.5	11.5	7	HRW	27
	35	120	35	35	20	75	3.5	40	13	M3×6ℓ	6	0	10	7		35
	50	164	42	42	20	100	9	50	16	M4×8ℓ	-3	1	17	7		50

Note1) For model JHRW17's location marked with "*", mounting bolts are used only on the LM rail side while the LM block side

uses M2.5 x 8 (nominal) tapping screws.

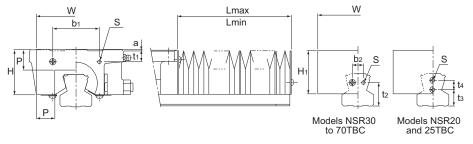
Note2) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

Note3) For lubrication when using the dedicated bellows, contact THK.

Note4) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

60/360

Model number of bellows for HRW21


Dimensions of the bellows (length when compressed / length when extended)

Note) The length of the bellows is calculated as follow.

S: Stroke length (mm)

[Dedicated Bellows J for Model NSR-TBC]

The table below shows the dimensions of dedicated bellows J for model NSR-TBC. Specify the corresponding model number of the desired bellows from the table.

Unit: mm

N.4-	اداد						Main	dime	nsions					, A ,	Supp	oorted
_	del o.	W	Н	H₁	Р	b ₁	t ₁	b ₂	t ₂	tз	t ₄	Mounting bolt S	а	(Lmax Lmin	m	odel nbers
	20	65	39	43	20	26	8	_	_	9	8	M4×8ℓ	8	7		20TBC
	25	75	43	45	20	40	11	_	_	12	8	M4×8ℓ	3	7		25TBC
	30	85	46	46	20	50	12	12	25	_	_	M4×8ℓ	_	7	NSR	30TBC
J	40	115	59	59	25	60	13	16	32	_	_	M5×10ℓ	_	9	INSIN	40TBC
	50	115	66	66	25	75	11	20	32	_	_	M5×10ℓ	_	9		50TBC
	70	124	84	78	25	96	16	36	40	_	_	M6×12ℓ	_	9		70TBC

Note1) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

Note2) For lubrication when using the dedicated bellows, contact THK.

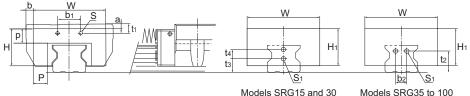
Note3) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted.

Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

J50 60/540

Model number of bellows for NSR50TBC

Dimensions of the bellows (length when compressed / length when extended)


Note) The length of the bellows is calculated as follow.

Lmin =
$$\frac{S}{(A-1)}$$
 S: Stroke length (mm)

Lmax = Lmin · A A: Extension rate

[Dedicated Bellows JSRG for Model SRG]

The table below shows the dimensions of dedicated bellows JSRG for model SRG. Specify the corresponding model number of the desired bellows from the table.

Unit: mm

									N	lain	dime	nsio	ns							^	Supp	ortod
Mod								t	1					Screw size	Mount- ing bolt		а	k	0	A Lmax	mo	del
		W	Н	H₁	Р	р	b₁	A/C	R/V	b_2	t ₂	t 3	t ₄	S	S ₁	A/C	R/V	A/C	R/V	\ Lmin /	Hulli	DEIS
	15	55	27	27	14.2	12.7	28	10.3	10.3	_	_	10.6	_	M2	M4	7	7	4	10.5	5		15
	20	66	32	32	17	15	38.5	9.6	9.6	_	_	7.4	8	M2	М3	6.6	6.6	1.5	11	6		20
	25	78	38	38	23	18	27.6	3.9	7.9	_	_	10	8	M2	M3×6ℓ	-6.5	-2.5	4	15	6		25
	30	84	42	42	22	19	37.4	10.4	13.4	_	_	11	10	М3	M4×8ℓ	-5	-2	3	12	7		30
JSRG	35	88	42	42	22	15	35	5	12	13	23	-	_	М3	M4×4ℓ	0	7	6	-9	5	SRG	35
JONG	40	100	51	51	20	20	32	7	17	15	29	1	_	М3	M5×4ℓ	0	10	10	-7	7	SING	45
	50	108	57	57	20	20	36	10	20	25	35	_	_	М3	M5×4ℓ	3	13	16	-4	7		55
	65	132	75.5	75.5	28.5	25	46	9	9	28	42	_	_	M4	M6×5ℓ	3	3	19	-3	9		65
	85	168	91	91	35.5	30	120	15	_	30	55	_	_	M6	M6×8ℓ	3	_	23.5	_	9		85
	100	198	100	100	43	33	152	13.3	_	36	60	-	_	M6	M6×8ℓ	4	_	26	_	9	1	100

Note1) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

Note2) For lubrication when using the dedicated bellows, contact THK.

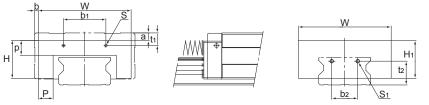
Note3) When using the dedicated bellows, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

JSRG35

60/420

Model number of bellows for SRG35

Dimensions of the bellows (length when compressed / length when extended)


Note) The length of the bellows is calculated as follow.

S: Stroke length (mm)

Lmax = Lmin · A A: Extension rate

[Dedicated Bellows JSRW for Model SRW]

The table below shows the dimensions of dedicated bellows JSRW for model SRW. Specify the corresponding model number of the desired bellows from the table.

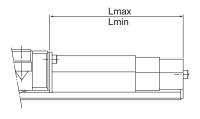
Unit: mm

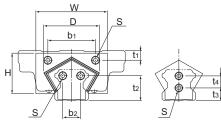
								Maii	n din	nensi	ions					Suppo	orted
Model	No.	W	Н	H₁	Р	р	b₁	t ₁	b ₂	t 2	Screw size S	Mounting bolt S ₁	а	b	$\begin{pmatrix} A \\ \underline{Lmax} \\ Lmin \end{pmatrix}$	mod	del
	70	125	51	51	20	20	57	17	35	32	М3	M5×4L	10	5	7		70
	85	138	57	57	20	20	68	20	42	36	M3	M5×4L	13	13.5	7		85
JSRW	100	169	75.5	75.5	28.5	25	83	19	50	46	M4	M6×5L	13	15.5	9	SRW	100
	130	220	96	96	36.5	35	165	35	60	55	M6	M6×8L	18	20	9		130
	150	260	114	114	49	47	200	43.3	70	60	M6	M6×8L	20	20	9		150

Note1) For lubrication when using the dedicated bellows, contact THK. Note2) When desiring to use the dedicated bellows other than in horizontal mount (i.e., vertical, wall and inverted mount), or when desiring a heat-resistant type of bellows, contact THK.

Model number coding

JSRW70 - 60/420


Model number of bellows for SRW70


Dimensions of the bellows (length when compressed / length when extended)

LM Cover

[Dedicated LM Cover TPH for Model HSR]

The tables below show the dimensions of dedicated LM cover TPH for model HSR. Specify the corresponding model number of the desired bellows from the table.

Models HSR25 and 30

Unit: mm

						Main	dimensi	ons					orted
Mode	el No.	W	D (max)	Н	b ₁	t ₁	b ₂	t ₂	t₃	t ₄	Mounting bolt S	_	del bers
	25	55	42	28	30	7	_	_	10	8	M3×6ℓ		25
	30	60	48	34	40	8	_	_	11	10	M4×8ℓ		30
TPH	35	70	55	38	40	9	14	23	_	_	M4×8ℓ	HSR	35
	45	90	75	48	58	10	20	29	_	_	M5×10ℓ		45
	55	100	88	55	66	11	26	35	_	_	M5×10ℓ		55

Unit: mm

Unit: mm

Mode	el No.	Stage	L	-	Stroke
IVIOGE	i ivo.	Stage	min	max	Olloke
		3	200	530	330
	25	3	150	380	230
		3	100	230	130
		3	250	680	430
TPH	30	3	200	530	330
11-11		3	150	380	230
		3	300	830	530
	35	3	250	680	430
	55	3	200	530	330
		3	150	380	230

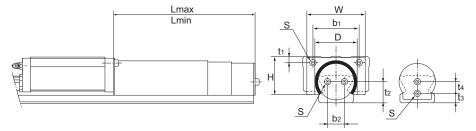
Mode	el No.	Stage	l	_	Stroke					
ivioue	i ivo.	Stage	min	max	Sticke					
		3	350	980	630					
	45	3	300	830	530					
	40	3	250	680	430					
TPH		3	200	530	330					
1111		4	400	1460	1060					
	55	4	350	1330	980					
	33	4	300	1060	760					
		4	250	860	610					
Note1) For Juhrication when using the dedicated LM sever										

Note1) For lubrication when using the dedicated LM cover, contact THK.

Note2) When using the dedicated LM cover, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

Model number coding

TPH55 - 400/1460


Model number of LM cover for HSR55

Lmax (cover length when extended)

Lmin (cover length when compressed)

[Dedicated LM Cover TPS for Model SR]

The tables below show the dimensions of dedicated LM cover TPS for model SR. Specify the corresponding model number of the desired bellows from the table.

Models SR30 to 55 Model SR25

Unit: mm

						Main	dimensi	ons				Sunn	orted
Mode	el No.	W	D (max)	Н	b ₁	t ₁	b ₂	t ₂	t₃	t ₄	Mounting bolt S	mo	del bers
	25	42	30	26.5	29	5	_	_	6	7	M3×6ℓ		25
	30	54	37	34.5	42	5	12	17	_	_	M4×8ℓ		30
TPS	35	64	42	38	44	6.5	14	20	_	_	M5×10ℓ	SR	35
	45	76	55	48	60	8	22	27	_	_	M5×10ℓ		45
	55	90	61	54.5	70	10	24	28	_	_	M6×12ℓ		55

Unit: mm

Unit: mm

Mode	al No	Stage	I	=	Stroke		
Wiode	71 140.	Olage	min	max	Olloke		
		3	200	530	330		
	25	3	150	380	230		
		3	100	230	130		
		3	250	680	430		
TPS	30	3	200	530	330		
11-3		3	150	380	230		
				3	300	830	530
	35	3	250	680	430		
	55	3	200	530	330		
		3	150	380	230		

Mode	al No	Stage	I	-	Stroke				
Wiode) 1 4 0.	Otage	min	max	Olloko				
		3	350	980	630				
	45	3	300	830	530				
	40	3	250	680	430				
TPS		3	200	530	330				
11-3		4	400	1460	1060				
	55	4	350	1330	980				
	33	4	300	1060	760				
		4	250	860	610				
Note1) For Juhrication when using the dedicated LM cover									

Note1) For lubrication when using the dedicated LM cover, contact THK.

Note2) When using the dedicated LM cover, the LM block and LM rail need to be machined so that the bellows can be mounted. Be sure to indicate that the dedicated bellows is required when ordering the LM Guide.

Model number coding

TPS55 - 400/1460

Model number of LM cover for SR55

Lmax (cover length when extended)

Lmin (cover length when compressed)

Cap C

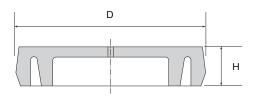
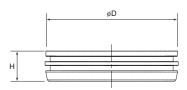


Table1 List of Model Numbers Supported for the Dedicated Cap C for LM Rail Mounting Holes


Model	Bolt	Main o			Supported model number													
No.	used	D	н	SSR	SCR	SR	SNR SNS	NR NRS	SHS HSR CSR HCR	HMG	SHW HRW	SRG SRN	GSR	HR	SRS RSR RSH	SRS-W RSR-W RSH-W	NSR- TBC	SRW
С3	МЗ	6.3	1.2	_	-	15	-	_	12	-		ı	ı	1123 1530	12 15	9	-	_
C4	M4	7.8	1.0	15Y	1	-	-	-	15	15	12, 14, 17, 21, 27	15	15	1	14	-	-	-
C5	M5	9.8	2.4	20		20	25	25X	20	-	_	20	20	2042	20	_	20	_
C6	M6	11.4	2.7	25Y 30	25	25Y 30	30	30	25	25	35	25	25	1	25	_	25 30	-
C8	M8	14.4	3.7	35	30 35	35	35	35	30 35	35	50	30 35	30	2555 3065	_	_	40	-
C10	M10	18.0	3.7	_	_	45	_	_	_	_	60	_	35	3575	_	_	50	70
C12	M12	20.5	4.7	_	45	55	45	45	45	45	_	45	_	4085	_	_	70	85
C14	M14	23.5	5.7	_	_		55	55	55	ı	_	55		_		_	ı	100
C16	M16	26.5	5.7	_	65	70 85	65	65	65	65	_	65		50105		_	_	130
C22	M22	35.5	5.7	_	_	_	_	85	85	_	_	85	_	_	_	_	_	150
C24	M24	39.5	7.7	_	_	-	-	_	-	-	_	100	-	_	-	_	-	_

Note) The dedicated cap for the LM rail mounting hole can be made of other materials (e.g., metal). Contact THK for details.

Cap GC

[Specification Table]

Unit: mm

Ī	Model No.	Outer diameter D	Thickness H
ſ	GC5	9.86	2.5
	GC6	11.36	2.5
	GC8	14.36	3.5
	GC10	17.86	3.5
	GC12	20.36	4.6
	GC14	23.36	5.0
	GC16	26.36	5.0
ſ	GC22	35.36	5.0
	GC24	39.36	5.0

[Supported model numbers]

GC caps are suitable for various different model numbers.

	LM rail					LM (Guide m	odel nur	nber				
Model No.	mount- ing bolt	SSR	SR	SNR SNS	NR NRS	SHS HSR HCR	SCR CSR	SHW HRW	SRG SRN	SRW	GSR	HR	NSR- TBC
GC5	M5	20	20	25	25X	20	20	_	20	_	20	2042	20
GC6	M6	25Y 30	25Y 30	30	30	25	25	35	25	_	25	-	25 30
GC8	M8	35	35	35	35	30 35	30 35	50	30 35	_	30	2555 3065	40
GC10	M10	_	45	_	_	_	_	60	_	70	35	3575	50
GC12	M12	_	55	45	45	45	45	_	45	85	_	4085	70
GC14	M14	_	-	55	55	55	-	-	55	100	-	_	_
GC16	M16	1	70 85	65	65	65	65	-	65	130	-	50105	-
GC22	M22	_	_	85	85	85	_	_	85	150	_	_	_
GC24	M24	_	120	_	_	100	_	_	100	_	_	_	_

Model number coding

+1200L SNR45 KKHH C0

Model Type of number LM block

With QZ Lubricator

Contamination protection accessory symbol

LM rail length (in mm) Radial clearance symbol Normal (No symbol) Light preload (C1)

Medium preload (C0)

With GC cap (Note 5) Symbol for No. of rails used on the same plane (Note 5)

Accuracy symbol Normal grade (No Symbol) High accuracy grade (H) Precision grade (P) Super precision grade (SP) Ultra precision grade (UP)

rail

No. of LM blocks

used on the same

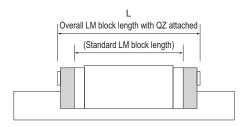
Note1) LM guides with GC caps are special rails.

Note2) They cannot be mounted on stainless steel LM rails or LM rails that have undergone surface treatment.

Note3) If this product will be used in special environments, such as in a vacuum or at very low or high temperatures, contact THK.

Note4) GC caps are not sold individually. They are sold as a set with LM guides.

Note5) The openings of LM rail mounting holes are not chamfered. Take care not to injure your hands while working.


Note6) After fitting GC caps, the upper surface of the LM rail must be flattened and cleaned (wiped). Note7) If you wish to fit GC caps for a single rail, use the sample model number configuration shown below.

(Example) SNR45LR2QZKKHHC0+1200LPGC

With GC cap

* Add the symbol (GC) to the end of the model number.

LM Block Dimension (Dimension L) with QZ Attached

Unit: mm

			L									
	Model No.	Standard overall length	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	- "	QZZZHH		
	15C/V/R	64.4	84.4	84.4	89.8	86.8	92.2	100	105.4	101.2	106.6	
	15LC/LV	79.4	99.4	99.4	104.8	101.8	107.2	115	120.4	116.2	121.6	
	20C/V	79	99	99	105.4	103	109.4	115.4	121.8	117.8	124.2	
	20LC/LV	98	118	118	124.4	122	128.4	134.4	140.8	136.8	143.2	
	25C/V/R	92	114.4	114.4	121.6	120.4	127.6	132	139.2	134.4	141.6	
	25LC/LV/LR	109	131.4	131.4	138.6	137.4	144.6	149	156.2	151.4	158.6	
	30C/V/R	106	127.4	127.4	136	133.8	142.4	149.4	158	151.8	160.4	
SHS	30LC/LV/LR	131	152.4	152.4	161	158.8	167.4	174.4	183	176.8	185.4	
3113	35C/V/R	122	145	145	154.8	152.4	162.2	168	177.8	170.4	180.2	
	35LC/LV/LR	152	175	175	184.8	182.4	192.2	198	207.8	200.4	210.2	
	45C/V/R	140	173	173	182.8	181.2	191	199	208.8	202.2	212	
	45LC/LV/LR	174	207	207	216.8	215.2	225	233	242.8	236.2	246	
	55C/V/R	171	205.4	205.4	216.6	214.2	225.4	232	243.2	235.2	246.4	
	55LC/LV/LR	213	247.4	247.4	258.6	256.2	267.4	274	285.2	277.2	288.4	
	65C/V	221	256.2	256.2	268.6	266.2	278.6	288	300.4	291.2	303.6	
	65LC/LV	272	307.2	307.2	319.6	317.2	329.6	339	351.4	342.2	354.6	
	15XVY	40.3	59.3	59.3	65.1	62.7	68.5	75.5	81.3	76.7	82.5	
	15XWY/XTBY	56.9	75.9	75.9	81.7	79.3	85.1	92.1	97.9	93.3	99.1	
	20XV	47.7	66.2	66.2	73.1	72.1	79	83.7	90.6	86.1	93	
SSR	20XW/XTB	66.5	85	85	91.9	90.9	97.8	102.5	109.4	104.9	111.8	
SSK	25XVY	60	82.6	82.6	90	88.4	95.8	100	107.4	102.4	109.8	
	25XWY/XTBY	83	105.6	105.6	113	111.4	118.8	123	130.4	125.4	132.8	
	30XW	97	119.7	119.7	127.8	125.4	133.5	141	149.1	143.4	151.5	
	35XW	110.9	134.3	134.3	143.3	141.3	150.3	156.9	165.9	159.3	168.3	
	25R/C	82.8	105.2	105.2	112.8	110.9	118.5	122.5	130.1	124.9	132.5	
	25LR/LC	102	124.4	124.4	132	130.1	137.7	141.7	149.3	144.1	151.7	
	30R/C	98	121.2	121.2	131	126.9	136.7	141.7	151.5	144.1	153.9	
	30LR/LC	120.5	143.7	143.7	153.5	149.4	159.2	164.2	174	166.6	176.4	
	35R/C/RH/CH	109.5	142.7	142.7	152.9	149.5	159.7	164.3	174.5	166.7	176.9	
SNR/	35LR/LC/LRH/LCH	135	168.2	168.2	178.4	175	185.2	189.8	200	192.2	202.4	
SNS	45R/C/RH/CH	138.2	171.4	171.4	181.6	179	189.2	196.4	206.6	199.6	209.8	
	45LR/LC/LRH/LCH	171	204.2	204.2	214.4	211.8	222	229.2	239.4	232.4	242.6	
	55R/C/RH/CH	163.3	204.5	204.5	214.7	213.2	223.4	231	241.2	234.2	244.4	
	55LR/LC/LRH/LCH	200.5	241.7	241.7	251.9	250.4	260.6	268.2	278.4	271.4	281.6	
	65R/C	186	227.6	227.6	238.2	236.3	246.9	257.5	268.1	260.7	271.3	
	65LR/LC	246	287.6	287.6	298.2	296.3	306.9	317.5	328.1	320.7	331.3	
	12CAM/CRM	37	47	47	_	_	_	58	_	_	_	
SHW	12HRM	50.4	60.4	60.4	_	_	_	71.4	_	_	_	
SHAN	14CAM/CRM	45.5	55.5	55.5	_	_	_	70.7	_	_		
	17CAM/CRM	51	63	63	66	65.4	68.4	78.2	81.2	79.4	82.4	

											Unit: mn
							L				
	Model No.	Standard overall length	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	QZDDHH	QZZZHH	QZKKHH
	21CA/CR	59	75	75	80	78.6	83.6	91.6	96.6	93.2	98.2
SHW	27CA/CR	72.8	92.8	92.8	98.6	97.2	103	109.4	115.2	111.8	117.6
SHAA	35CA/CR	107	127	127	134.4	132	139.4	149	156.4	151.4	158.8
	50CA/CR	141	161	161	169.2	167.4	175.6	186	194.2	188.4	196.6
	7	23.4	33.4	33.4	_	_	_	_	_	_	_
	7W	31	41	41	_	_	_	_	_	_	_
	9	30.8	40.8	40.8	_	_	_	52.4	_	_	_
	9N	40.8	50.8	50.8	_	_	_	62.4	_	_	_
	9W	39	49	49	_	_	_	60.6	_	_	_
	9WN	50.7	60.7	60.7	_	_	_	72.3	_	_	_
	12	34.4	44.4	44.4	_	_	_	56	_	_	_
SRS	12N	47.1	57.1	57.1	_	_	_	69.1	_	_	_
SING	12W	44.5	54.5	54.5	_	_	_	66.1	_	_	_
	12WN	59.5	69.5	69.5	_	_	_	81.1	_	_	_
	15	43	55	55	_	_	_	69.2	_	_	_
	15N	60.8	72.8	72.8	_	_	_	87	_	_	_
	15W	55.5	67.5	67.5	_	_	_	81.7	_	_	_
	15WN	74.5	86.5	86.5	_	_	_	100.9	_	_	_
	20	50	66	66	_	_	_	81.2	_	_	_
	25	77	97	97	_	_	_	112.6	_	_	_
	15S	64.4	84.4	84.4	89.8	86.8	92.2	100.4	105.4	101.4	106.9
	20S	79	99	99	105.4	103	109.4	115.5	122	118	124.5
	20	98	118	118	124.4	122	128.4	134.5	141	137	143.5
SCR	25	109	131.4	131.4	138.6	137.4	144.6	149	156.2	151.4	158.6
JOIN	30	131	152.4	152.4	161	158.8	167.4	174.4	183	176.8	185.4
	35	152	175	175	184.8	182.4	192.2	198	207.8	200.4	210.2
	45	174	207	207	216.8	215.2	225	233	242.8	236.2	246
	65	272	307.2	307.2	319.6	317.2	329.6	339	351.4	342.2	354.6
	15A/B/R/YR	56.6	79.6	79.6	87.6	84.2	92.2	98.8	106.8	100	108
	20A/B/R/CA/CB/YR	74	96.2	96.2	104.4	102	110.2	113.6	121.8	116	124.2
	20LA/LB/LR/HA/HB	90	112.2	112.2	120.4	118	126.2	129.6	137.8	132	140.2
	25A/B/R/CA/CB/YR	83.1	104.1	104.1	112.1	109.8	117.8	121.4	129.4	123.8	131.8
	25LA/LB/LR/HA/HB	102.2	123.2	123.2	131.2	128.9	136.9	140.5	148.5	142.9	150.9
	30A/B/R/CA/CB/YR	98	119	119	127	124.7	132.7	140.3	148.3	142.7	150.7
	30LA/LB/LR/HA/HB	120.6	141.6	141.6	149.6	147.3	155.3	162.9	170.9	165.3	173.3
HSR	35A/B/R/CA/CB/YR	109.4	132.2	132.2	142	139	148.8	154.6	164.4	157	166.8
	35LA/LB/LR/HA/HB	134.8	157.6	157.6	167.4	164.4	174.2	180	189.8	182.4	192.2
	45A/B/R/CA/CB/YR	139	174.8	174.8	181.6	176.6	186.4	_	_	_	_
	45LA/LB/LR/HA/HB	170.8	206.6	206.6	213.4	208.4	218.2	_	_	_	
	55A/B/R/CA/CB/YR	163	197.2	197.2	208.4	202	213.2	_	_	_	_
	55LA/LB/LR/HA/HB	201.1	235.3	235.3	246.5	240.1	251.3	_	_	_	_
	65A/B/R/CA/CB/YR	186	221.4	221.4	233.8	226.6	239	_	_	_	_
	65LA/LB/LR/HA/HB	245.5	280.9	280.9	293.3	286.1	298.5				
	25XR/XA/XB	82.8	105.2	105.2	112.8	110.9	118.5	122.5	130.1	124.9	132.5
	25XLR/XLA/XLB	102	124.4	124.4	132	130.1	137.7	141.7	149.3	144.1	151.7
	30R/A/B	98	120.4	120.4	129.4	126.1	135.1	141.7	150.7	144.1	153.1
NR/	30LR/LA/LB	120.5	142.9	142.9	151.9	148.6	157.6	164.2	173.2	166.6	175.6
NRS	35R/A/B	109.5	142.7	142.7	152.9	149.5	159.7	164.3	174.5	166.7	176.9
	35LR/LA/LB	135	168.2	168.2	178.4	175	185.2	189.8	200	192.2	202.4
	45R/A/B	139	172.2	172.2	182.4	179.8	190	197.6	207.8	200.8	211
	45LR/LA/LB	171	204.2	204.2	214.4	211.8	222	229.6	239.8	232.8	243
	55R/A/B	162.8	204.8	204.8	215	213.5	223.7	231.3	241.5	234.5	244.7

							_					
	Model No.	Standard overall length	QZUU	QZSS	QZDD	QZZZ	QZKK	QZSSHH	QZDDHH	QZZZHH	QZKKH	
	55LR/LA/LB	200	242	242	252.2	250.7	260.9	268.5	278.7	271.7	281.9	
NR/	65R/A/B	185.6	227.6	227.6	238.2	236.3	246.9	258.1	268.7	261.3	271.9	
NRS	65LR/LA/LB	245.6	287.6	287.6	298.2	296.3	306.9	318.1	328.7	321.3	331.9	
	9KM	30.8	40.8	_		_	_	_		_	_	
	9N	40.8	50.8	_	_	_	_	_	_	_	_	
	9WVM	39	49	_	_	_	_	_	_	_	_	
	9WN	50.7	60.7	_	_	_	_	_	_	_	_	
	12VM	35	45	_	_	_	_	_	_	_	_	
DCD	12N	47.7	57.7	_	_	_	_	_	_	_	_	
RSR	12WV/WVM	44.5	54.5	_	_	_	_	_	_	_	_	
	12WN	59.5	69.5	_	_	_	_	_	_	_	_	
	15VM	42.9	54.9	_	_	_	_	_	_	_	_	
	15N	60.7	72.7	_	_	_	_	_	_	_	_	
	15WV/VM	55.5	67.5	_	_	_	_	_	_	_	_	
	15WN	74.5	86.5	_	_	_	_	_	_	_	_	
	15A/V	69.2	90.6	90.6	92.6	_	_	_	_	_	_	
	20A/V	86.2	107.6	107.6	109.6	111	113	125.2	127.2	127.6	129.6	
	20LA/LV	106.2	127.6	127.6	129.6	131	133	145.2	147.2	147.6	149.6	
	25C/R	95.5	125.5	125.5	130.5	130.5	135.5	145.3	151.7	147.7	154.1	
SRG	25LC/LR	115.1	145.1	145.1	150.1	150.1	155.1	164.9	171.3	167.3	173.7	
	30C/R	111	141	141	148	146	153	160.8	169.2	164.6	171.6	
	30LC/LR	135	165	165	172	170	177	184.8	193.2	188.6	195.6	
	35C/R	125	155	155	162.8	163.4	171.2	178.6	186.4	181	188.8	
	35LC/LR	155	185	185	192.8	193.4	201.2	208.6	216.4	211	218.8	
	45C/R	155	185	185	194.2	194.2	203.4	212	221.2	215.2	224.4	
	45LC/LR	190	220	220	229.2	229.2	238.4	247	256.2	250.2	259.4	
	55C/R	185	225	225	234.2	234.2	243.4	252	261.2	255.2	264.4	
	55LC/LR	235	275	275	284.2	284.2	293.4	302	311.2	305.2	314.4	
	65LC/LV	303	343	343	354.2	354.2	370.4	380.4	391.6	378.6	389.8	
	35C/R	125	155	155	162.8	163.4	171.2	178.6	186.4	181	188.8	
	35LC/LR	155	185	185	192.8	193.4	201.2	208.6	216.4	211	218.8	
SRN	45C/R 45LC/LR	155 190	185 220	185 220	194.2 229.2	194.2 229.2	203.4	212 247	221.2 256.2	215.2 250.2	224.5 259.4	
SKIN	55C/R	185	225	225	234.2	234.2	243.4	252	261.2	255.2	264.4	
	55LC/LR	235	275	275	284.2	284.2	293.4	302	311.2	305.2	314.4	
	65LC/LR	303	343	343	354.2	354.2	370.4	380.4	391.6	378.6	389.8	
	70	190	220	220	229.2	229.2	238.4	247	256.2	250.2	259.4	
SRW	85	235	275	275	284.2	284.2	293.4	302	311.2	305.2	314.4	
OIXVV	100	303	343	343	354.2	354.2	370.4	380.4	391.6	378.6	389.8	
	1											
Model number coding												
SHS25 LC 2 QZ KKHH C0 +1200L P T Z - II Model Type of number LM block Lubricator (*1) With QZ Lubricator (*1) LM rail length (in mm) Symbol for LM rail steel iointed use tape tape (*5)												

number LM block Lubricator (*1) No. of LM blocks rail

Contamination used on the same protection accessory symbol (*2)

LM rail length (in mm) Radial clearance symbol (*3) Normal (No symbol)

Medium preload (C0)

for LM rail steel jointed use tape Accuracy symbol (*4) Light preload (C1)

Symbol for No. of rails used on the same plane (*5)

Normal grade (No Symbol)
High accuracy grade (H)
Precision grade (P)/Super precision grade (SP)
Ultra precision grade (UP)

(*1) See 🖾 1-345. (*2) See 🖾 1-352. (*3) See 🖾 1-89. (*4) See 🖾 1-94. (*5) See 🖾 1-35.

Note) This model number indicates that a single-rail unit constitutes one set. (i.e., required number of sets when 2 rails are used in parallel is 2 at a minimum.) Those models equipped with QZ Lubricator cannot have a grease nipple.

Lubrication Adapter

An oil lubricant-only lubrication adapter is available for models NR/NRS.

Even if the LM Guide is installed in an orientation where oil lubrication is difficult, such as wall mount and inversed mount, the adapter is capable of feeding a constant quantity of lubricant to the four raceways.

[Features]

The dedicated lubrication adapter for models NR-NRS is built in with a constant quantity distributor. Therefore, the adapter can accurately feed a constant quantity of lubricant to each raceway regardless of the mounting orientation. The adapter is economical since it is capable of constantly feeding the optimum amount of lubricant and helping eliminate the supply of surplus lubricant.

To provide pipe arrangement, simply connect an intermittent lubrication pump widely used for ordinary machine tools to the greasing holes

(M8) on the front and the side of the lubrication adapter.

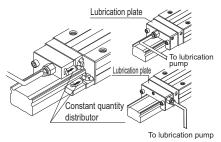


Fig.3 Structural Drawing

[Specifications]

Viscosity range of lubricant used	32 to 64 mm²/s recommended
Discharge	0.03×4, 0.06×4cc/1shot
Diameter of pipe connected	φ4, φ6
Material	Aluminum alloy

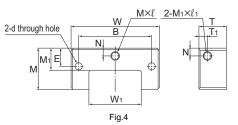


Table2 Dimension Table for Lubrication Adapter

Unit: mm

	Main dimensions												Quantity	
Model No.	Width W	Height M	Т	W ₁	M ₁	В	Е	N	T ₁	d	Μ×ℓ	$M_1 \times \ell_1$	per shot (cc/shot)	
A30N	56	29	25	29	14.5	46	14	5	5.3	3.5	M8×8	M8×8		
A35N	66	33	25	35	17	54	16.5	6	5.3	4.5	M8×8	M8×8	0.03×4	
A45N	81	38	25	48	20	67	16.5	7	7.8	6.6	M8×8	M8×8		
A55N	94	45.5	25	56	22	76	20.5	7	7.8	6.6	M8×8	M8×8		
A65N	119	55.5	25	67	26.3	92	25.5	11.5	7.8	9	M8×8	M8×8	0.06×4	
A85N	147	68.5	25	92	34	114	32	15.5	7.8	9	M8×8	M8×8		

End Piece EP

For those models whose balls may fall if the LM rail is pulled out of the LM block, an end piece is attached to the product to prevent the LM block from being removed from the LM rail.

For models that can use the end piece, see the table below.

If removing the end piece when using the LM Guide, be sure that the LM block will not overshoot.

The end piece can also be used as a fixing jig for a steel tape, and is available also for the LM rail of models SSR, SR and HSR.

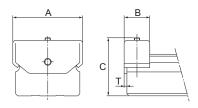


Fig.5 End Piece EP for Models NR/NRS

Table3 Dimension Table for End Piece EP for Models NR/NRS
Unit: mm

Model No.	Α	В	С	Т
NR/NRS 25X	26	14	25	1.5
NR/NRS 30	31	14	31	1.5
NR/NRS 35	38	16	32.5	2
NR/NRS 45	49	18	41	2
NR/NRS 55	57	20	46.5	2
NR/NRS 65	69.4	22	59	3.2
NR/NRS 75	81.7	28	56	3.2
NR/NRS 85	91.4	22	68	3.2
NR/NRS 100	106.4	25	73	3.2

Greasing Hole

[Grease Nipple and Greasing Hole for Models SHW and SRS]

Models SHW and SRS do not have a grease nipple as standard. Installation of a grease nipple and the drilling of a greasing hole is performed at THK. When ordering SHW and SRS, indicate that the desired model requires a grease nipple or greasing hole. (For greasing hole dimensions and supported grease nipple types and dimensions, see Table4.)

When using SHW and SRS under harsh conditions, use QZ Lubricator* (optional) or Laminated Contact Scraper LaCS* (optional).

Note1) Grease nipple is not available for models SHW12, SHW14, SRS9M, SRS9WM, SRS12M and SRS12WM. They can have a greasing hole.

Note2) Using a greasing hole other than for greasing may cause damage.

Note3) For QZ Lubricator*, see ■1-345. For Laminated Contact Scraper LaCS*, see ■1-335.

Note4) When desiring a grease nipple for a model attached with QZ Lubricator, contact THK.

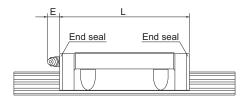


Fig.6 Dimensions of the Grease Nipple for Model SHW

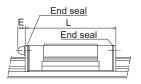
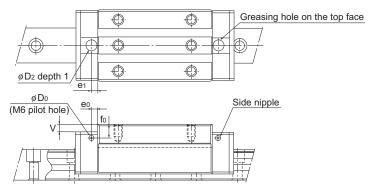


Fig.7 Dimensions of the Grease Nipple for Model SRS

Note) For the L dimension, see the corresponding specification table

Table4 Table of Grease Nipple and Greasing Hole Dimensions

Unit: mm

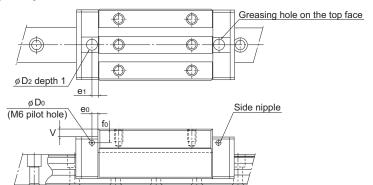

Me	odel No.	Е	Grease nipple or greasing hole
	12	_	ϕ 2.2 drilled hole
	14	_	φ2.2 drilled hole
	17	5	PB107
SHW	21	5.5	PB1021B
	27	12	B-M6F
	35	12	B-M6F
	50	16	B-PT1/8
	7M	_	ϕ 1.2 drilled hole
	7WM	_	φ1.2 drilled hole
	9 M/N	_	ϕ 1.5 drilled hole
	9 WM/WN	_	ϕ 1.6 drilled hole
	12 M/N	_	φ2.0 drilled hole
SRS	12 WM/WN	_	ϕ 2.0 drilled hole
SKS	15 M/N	4.0 (5.0)	PB107
	15 WM/WN	4.0 (5.0)	PB107
	20M	3.5 (5.0)	PB107
	25M	4.0 (5.5)	PB1021B

Note) Figures in the parentheses indicate dimensions without a seal.

[Greasing Hole for Model SRG]

Model SRG allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.

When using the greasing hole on the top face of models SRG-R and SRG-LR, a greasing adapter is separately required. Contact THK for details.

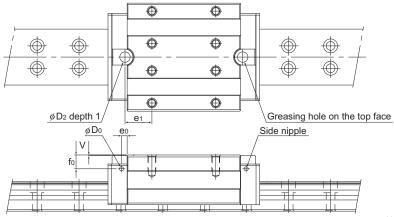

Unit: mm

Model No.		Pilot h	ole for side	nipple	Applicable	Greasing hole on the top face				
		e ₀	fo	D ₀	nipple	D ₂	(O-ring)	V	e ₁	
	15A 15V	4	6	2.9	PB107	9.2	(P6)	0.5	5.5	
	20A 20LA	4	6	2.9	PB107	9.2	(P6)	0.5	6.5	
	20V 20LV	4	6	2.9	PB107	9.2	(P6)	0.5	6.5	
	25C 25LC	6	6.4	5.2	M6F	10.2	(P7)	0.5	6	
	25R 25LR	6	10.4	5.2	M6F	10.2	(P7)	4.5	6	
	30C 30LC	6	6.2	5.2	M6F	10.2	(P7)	0.4	6	
	30R 30LR	6	9.2	5.2	M6F	10.2	(P7)	3.4	6	
SRG	35C 35LC	6	6	5.2	M6F	10.2	(P7)	0.4	6	
	35R 35LR	6	13	5.2	M6F	10.2	(P7)	7.4	6	
	45C 45LC	7	7	5.2	M6F	10.2	(P7)	0.4	7	
	45R 45LR	7	17	5.2	M6F	10.2	(P7)	10.4	7	
	55C 55LC	9	8.5	5.2	M6F	10.2	(P7)	0.4	11	
	55R 55LR	9	18.5	5.2	M6F	10.2	(P7)	10.4	11	
	65LC	9	13.5	5.2	M6F	10.2	(P7)	0.4	10	
	65LV	9	13.5	5.2	M6F	10.2	(P7)	0.4	10	
	85LC	15	22	8.2	PT1/8	13	(P10)	0.4	10	
	100LC	15	23	8.2	PT1/8	13	(P10)	0.4	10	

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details.

[Greasing Hole for Model SRN]

Model SRN allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.


Unit: mm

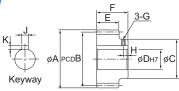
Mod	el No.	Pilot h	ole for side	nipple	Applicable	Greasing hole on the top face				
IVIOU	ei No.	e ₀	fo	D ₀	nipple	D_2	(O-ring)	V	e ₁	
	35C 35LC	8	6.5	5.2	M6F	10.2	(P7)	0.4	6	
	35R 35LR	8	6.5	5.2	M6F	10.2	(P7)	0.4	6	
	45C 45LC	8.5	7	5.2	M6F	10.2	(P7)	0.4	7	
SRN	45R 45LR	8.5	7	5.2	M6F	10.2	(P7)	0.4	7	
	55C 55LC	10	8	5.2	M6F	10.2	(P7)	0.4	11	
	55R 55LR	10	8	5.2	M6F	10.2	(P7)	0.4	11	
	65LC	9	11	5.2	M6F	10.2	(P7)	0.4	10	
	65LR	9	11	5.2	M6F	10.2	(P7)	0.4	10	

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details.

[Greasing Hole for Model SRW]

Model SRW allows lubrication from both the side and top faces of the LM block. The greasing hole of standard types is not drilled through in order to prevent foreign material from entering the LM block. When using the greasing hole, contact THK.

Unit: mm

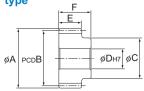

Model No.		Pilot h	ole for side	nipple	Applicable	Greasing hole on the top face				
IVIOU	ei ivo.	e₀	fo	D ₀	nipple	D_2	(O-ring)	V	e ₁	
	70	7	17	5.2	M6F	13	(P10)	0.4	33.7	
	85	9	18.5	5.2	M6F	13	(P10)	0.4	42.75	
SRW	100	9	23.5	5.2	M6F	13	(P10)	0.4	55	
	130	15	42	8.2	PT1/8	13	(P10)	0.4	10	
	150	15	53	8.2	PT1/4	13	(P10)	0.4	10	

Note) The greasing interval is longer than that of full-roller types because of the roller cage effect. However, the actual greasing interval may vary depending on the service environment, such as a high load and high speed. Contact THK for details.

Rack and Pinion

[Pinion for rack - type A]

The keyway worked type


Unit: mm

Model No.	Pitch	Number of teeth	Tip circle diameter A	Meshing PCD B	Boss diameter C	Hole diameter D	Tooth width E	Overall length F	G	Н	Keyway J×K	Supported model numbers
GP 6-20A	6	20	42.9	39	30	18	16.5	24.5	МЗ	4	6×2.8	GSR 25-R
GP 6-25A	1 "	25	51.9	48	35	18	10.5	24.5	IVIO	7	0 / 2.0	00K 25-K
GP 8-20A	8	20	57.1	52	40	20	19	26	МЗ	5	8×3.3	GSR 30-R
GP 8-25A	Ü	25	69.1	64	40	20	19	20	M4)	0 < 0.5	00K 30-K
GP10-20A	10	20	70.4	64	45	25	22	30	M4	5	8×3.3	GSR 35-R
GP10-25A	1 '0	25	86.4	80	60	25		50	1717	3	10×3.3	301 30-I

Note1) When placing an order, specify the model number from the table. Note2) Non-standard pinions with different numbers of teeth are also available upon request. Contact THK for details.

[Pinion for rack - type C]

The reworkable hole diameter type

Unit: mm

Model No.	Pitch	Number of teeth	Tip circle diameter A	Meshing PCD B	Boss diameter C	Hole diameter D	Tooth width E	Overall length F	Supported model numbers
GP 6-20C	6	20	42.9	39	30	12	16.5	24.5	GSR 25-R
GP 6-25C	0	25	51.9	48	35	15	10.5	24.5	GSIN 23-IN
GP 8-20C	8	20	57.1	52	40	18	19	26	GSR 30-R
GP 8-25C	0	25	69.1	64	40	18	13	20	OOK 30-K
GP10-20C	10	20	70.4	64	45	18	22	30	GSR 35-R
GP10-25C	10	25	86.4	80	60	18	22	30	OOK 33-K

Note1) When placing an order, specify the model number from the table. Note2) Non-standard pinions with different numbers of teeth are also available upon request. Contact THK for details.

[The dimension when the LM rail is used in combination with a pinion]

Unit: mm

Model GSR Model No.	Pinion Model No.	LM rail Pitch line height Rh	Pinion Meshing PCD B	Rh+B/2	
	GP 6-20A		39	62.5	
GSR 25-R	GP 6-20C	43	**		
001(20 IX	GP 6-25A	40	48	67	
	GP 6-25C		40	07	
	GP 8-20A		52	74	
GSR 30-R	GP 8-20C	48	32	74	
GSK 30-K	GP 8-25A	40	64	80	
	GP 8-25C		04	60	
	GP 10-20A		64	89	
GSR 35-R	GP 10-20C	57	04	09	
GSK 33-K	GP 10-25A	37	80	97	
	GP 10-25C		00	97	